Titomic and Fincantieri Australia Sign Material Science Testing Agreement for Kinetic Fusion 3D Printing

Share this Article

3D printing company Titomic, headquartered in Melbourne, Australia and well-known for its innovative Kinetic Fusion technology, has recently been announcing multiple new collaborations, including agreements with a golf company and a mining and oil & gas engineering services company. Last month, the company announced a Memorandum of Understanding (MOU) with the Australian division of Italy-based Fincantieri, one of the largest shipbuilding groups in the world; now, the two are expanding their partnership with the signing of a Material Science Testing (MST) agreement.

“The activities between Fincantieri and Titomic evaluate the benefits of applying the proprietary Titomic Kinetic Fusion technology to manufacture mechanical components for Naval and Merchant Ships,” said Dario Deste, the Chairman of Fincantieri Australia. “With over 100 ships on order around the world, Fincantieri has the size and strength to bring new technology to market.”

This MST agreement is the first step in the plan to evaluate Titomic’s proprietary Kinetic Fusion process, and see if it has the potential to augment the manufacturing activities currently being used in Fincantieri’s shipbuilding projects.

This is Titomic’s first MST agreement with Fincantieri, which has 20 shipyards across four continents, and it calls for the comprehensive testing of an alloy, specified by the shipbuilder, in accordance with the International Standards of ASTM, in order to attain the desired chemical and mechanical properties. The test capabilities will include chemistry analysis, hardness, porosity, and strength.

“We are pleased to kick off this first project with Fincantieri as part of our MoU,” said Jeff Lang, Titomic’s CTO. “We will be producing test samples at our new state of the art facility in Melbourne in order to conduct the stringent tests required. This is the first step towards manufacturing large marine parts on our metal 3D printers of limitless scale.”

The outcome of these tests will provide important technical information on the durability, cost efficiencies, material properties, performance, and strength of Titomic’s Kinetic Fusion process, which can 3D print complex metal parts without any size or shape constraints. The technology can also join dissimilar metals and composites in a structure for engineered properties, as well as create stronger structures without any bending, folding, or welding, and will hopefully help bring important shipbuilding jobs back to the country.

“Titomic’s technology combined with Fincantieri’s technology transfer program to Australia creates the potential to return Australia’s capability in mechanical componentry,” said Sean Costello, the Director at Fincantieri Australia. “Our aim is to return high-value jobs to Australia, reduce costs and become sovereign as a shipbuilding nation.”

Fincantieri, one of the shortlisted bidders for Australia’s Future Frigates SEA 5000 program, has built over 7,000 vessels in its more than 230 years of existence, and also maintains and refurbishes cruise ships, which is an international industry growing in leaps and bounds.

The analysis of the Kinetic Fusion tests that will be carried out as part of the MST agreement between Titomic and Fincantieri will also take into account the Australian capabilities for manufacturing processes, in addition to redesigning components so Titomic’s process can be used to help enhance material characteristics.

Riva Trigoso Shipyard [Image: Fincantieri]

As an additional part of the MOU the two companies signed in May, members of Titomic’s technology and operational team recently visited Fincantieri’s Riva Trigoso Shipyard in Italy, in order to gain a more complete understanding of the company’s mechanical components. This marks the first phase of a marine technology transfer to Australia.

Discuss this story and other 3D printing applications at 3DPrintBoard.com or share your thoughts in the comments below.

 

Share this Article


Recent News

Optical Metrology: The key to quality control in additive manufacturing

A New 3D Printing Method: Tethered Pyro-Electrospinning for 3D Printed Microstructures



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Microstructures for New Drug Delivery Systems with SPHRINT

In the recently published, ‘SPHRINT – Printing Drug Delivery Microspheres from Polymeric Melts,’ authors Tal Shpigel, Almog Uziel, and Dan Y. Lewitus explore better ways to offer sustained release pharmaceuticals...

3D Printing Polymeric Foam with Better Performance & Longevity for Industrial Applications

In the recently published ‘Age-aware constitutive materials model for a 3D printed polymeric foam,’ authors A. Maiti, W. Small, J.P. Lewicki, S.C. Chinn, T.S. Wilson, and A.P. Saab explore the...

Successes In 3D Printing Spinal Implants in Two Complex Cases

In the recently published ‘Challenges in the design and regulatory approval of 3D printed surgical implants: a two-case series,’ authors Koen Willemsen, Razmara Nizak, Herke Jan Noordmans, René M Castelein,...

Modular, Digital Construction System for 3D Printing Lightweight Reinforced Concrete Spatial Structures

Spatial structure systems, like lattices, are efficient load-bearing structures that are easy to adapt geometrically and well-suited for column-free, long-spanning constructions, such as hangars and terminals, and in creating free-form...


Shop

View our broad assortment of in house and third party products.


Services & Data

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!