
Chinese company INTAMSYS is known for its 3D printers’ abilities to print with tough, functional, high-performance materials and, in the case of the FUNMAT PRO HT, high-temperature materials. Now INTAMSYS has signed a new partnership to work with the University of California, San Francisco (UCSF) specifically on high-temperature 3D printing applications in the field of orthopedic surgery.
INTAMSYS has lent its 3D printing technology to the orthopedic field before, as its PEEK material in particular is strong, stiff and durable, making it ideal for applications like braces. The new INTAMSYS and UCSF team, which will develop medical applications for 3D printing, will be led by EDGE Labs, a research division within the UCSF orthopedic surgery department, and guided by musculoskeletal researchers Aenor Sawyer, MD, Alexis Dang, MD, and Alan Dang, MD.
“We are very pleased to work with UCSF’s Department of Orthopaedic Surgery to advance PEEK applications in medicine, as well as promoting health care cost savings in the field of orthopaedics,” said Charles Han, Chief Executive Officer of INTAMSYS. “Collaborating with surgeons to deliver the best possible patient outcomes is what drives our company.”
The UCSF Department of Orthopedic Surgery provides patient care, conducts clinical, basic science and translational research, and trains the next generation of global leaders in orthopedic surgery. This year, the department was nationally ranked by US News and World Report in 15 adult specialties and nine pediatric specialties, and the university is currently number one in National Institutes of Health (NIH) funding in orthopedic surgery.
The potential applications for 3D printing in the orthopedic field are numerous, from braces to implants, surgical guides to scaffolds. Those applications have still been limited, however, by the lack of access to high-temperature materials that can provide the kind of strength, durability and biocompatibility necessary for medical devices. The collaboration between INTAMSYS and UCSF will focus in particular on materials like PEEK, which has all of those characteristics and can be 3D printed by the FUNMAT PRO HT.
“This level of industrial grade printing has not been available at this price point,” said Alexis Dang. “We are interested in being able to prototype customized implants using high-temperature materials such as PEEK.”
The FUNMAT PRO HT also offers an open materials system, meaning that the researchers will have a lot of freedom in terms of experimentation with different materials, PEEK and otherwise. INTAMSYS plans to develop additional high-performance 3D printers in the future as well, building on its expertise and experience to make research and development like that with UCSF more easily accessible.
A wide range of people with a wide range of conditions will potentially be impacted by this research, including spinal conditions like scoliosis and joint conditions like arthritis. Using materials like PEEK, the collaborators will be able to 3D print carefully customized, patient-specific implants and braces that can relieve these traditionally difficult-to-treat afflictions. Until recently, 3D printers capable of printing with high-temperature, high-performance materials like PEEK were typically too expensive to be accessible to most people, including university research programs. But INTAMSYS’ 3D printers are not only effective, they’re affordable, opening up new possibilities in medical 3D printing and more around the world.
Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.
[Images provided by INTAMSYS]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
MX – Machining Transformation: Revolutionizing Manufacturing with Additive Technologies
The machining industry is experiencing a profound transformation, propelled by four key trends: Process Integration, Automation, Digital Transformation (DX), and Green Transformation (GX). Central to this evolution are Additive Manufacturing...
The Role of Multiplatform Solutions in Advancing Industrial Large Format 3D Printing
The past tumultuous year in the additive manufacturing industry have led to highs and lows for several companies. The magic recipe that continues to appear to lead to continuous growth...
3D Printing News Briefs, January 25, 2025: ESG & Sustainability, Layoffs, Furniture, & More
We’re starting off with some event news in today’s 3D Printing News Briefs, as AMUG has announced the keynote speakers for its 2025 conference, and Dyndrite starts its World Tour...
Investing in Tooling Innovation is Key to Reshoring Success
Outsourcing and retirement have dramatically shrunk the manufacturing workforce in the U.S., creating a challenge to efforts at reshoring production production. Pictured here is a toolmaker assembling an injection mold,...