Students Use 3D Printed Heart to Develop Next-Generation Pacemaker

Share this Article

[Photo: Brandon Martin/Rice University]

Several million people rely on pacemakers to regulate their heartbeats. There are different types of pacemakers, although for years the status quo has been a pulse generator that is located in a patient’s chest and connected to the heart via one to three wired stimulus and sensing leads. But recently new options have been appearing on the market – wireless and leadless options that are simpler and less vulnerable to complications. One of these wireless designs was recently presented by a team of students at Rice University, and won the Excellence in Capstone Engineering Design Award and a $1,000 prize at the annual George R. Brown Engineering Design Showcase on April 12th.

The Love and Pace team designed a pacemaker that would place a network of chips, each the size of a grain of rice, in multiple places inside the heart. These chips would communicate with a base station located under the patient’s skin and would charge via radio frequency. Whenever the base station sensed a problem with the heart’s rhythm, it would trigger the embedded chips to release a jolt of energy that would re-establish the heart’s normal rhythm.

Last year, former Rice University faculty member Aydin Babakhani and colleagues at the Texas Medical Center introduced a concept for a more advanced wireless pacemaker that could be embedded in the heart and charged via radio frequency energy harvesting. The students are attempting to build on that technology by establishing an entire network inside the heart.

“The current (commercial) leadless solution is a bullet-sized pacemaker with a battery that is installed inside the heart,” said team member Yoseph Maguire. “It is effective only in pacing a single chamber of the heart.”

(L to R) Chris Chivetta, June Chen, Yixin Chen, Yoseph Maguire, Cody Tapscott and Ricky Chen

Maguire and his fellow team members, computer and electrical engineering students Chris Chivetta, Yixin Chen, Cody Tapscott, Ricky Chen and June Chen, came up with a concept that uses millimeter-scale chips embedded permanently in the heart. They demonstrated the system using a 3D printed heart with light traces triggered by programmed anomalies and sensor-simulator chips that detected the problems and sent data to the base station. The base station then commanded the stimulators to released timed jolts to adjust the heart’s rhythm.

As no wires are involved, the control unit continuously sends power to and gathers data from the embedded chips through radio frequency identification. The chips would deliver 25 nanojoule charges to stimulate heart muscles.

[Photo: Brandon Martin/Rice University]

“It’s a master-slave network,” Maguire said. “Once you have these chips positioned within the heart and covered over by scar tissue, they would communicate with the aggregator — a bigger board that has an RFID reader, takes in all the data, processes it and relays it back to the chips. If things aren’t working out well in the heart, the aggregator would say, ‘Hey, guys, I need you to pace.’ They would continuously pace until the aggregator observed that things are good in all the chambers.”

The project is far from being finished, and will likely be carried on by subsequent teams of students after these students graduate. When Rice University mentors find that a project is too complex to be completed in one year but is important enough to continue researching, they will pass it on to another set of students.

“The heart is a very unique and harsh environment for circuitry,” Maguire said. “Having it all integrated is a huge research task, so for us, just developing a proof-of-concept is enough.”

The team developed its ideas with help from faculty advisors Joseph Cavallaro, a professor of electrical and computer engineering, and Gary Woods, a professor in the practice of computer technology and electrical and computer engineering, along with Texas Heart Institute cardiologists Dr. Mehdi Razavi and Dr. Brian Greet. Contributing to the machine learning and sensing aspects of the project were Behnaam Aazhang, a professor of electrical and computer engineering, and Yingyan Lin, a Texas Instruments visiting research assistant professor of electrical and computer engineering.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Source/Images: Rice University]

 

Share this Article


Recent News

VELO3D’s Metal 3D Printers Bought by Two Aerospace Customers

Wayland Additive Sells Electron Beam Metal 3D Printer to First Customer



Categories

3D Design

3D Printed Art

3D Printed Guns

3D Printer Reviews


You May Also Like

Featured

An Unforgettable AMUG | 3D Printing Leadership Redefined in 2021

“Please wear a mask in public spaces,” the Hilton Hotel lobby signage makes it pretty clear upon arrival that they want their guests to feel comfortable and safe while on...

Laser Wars: ScanLAB to Democratize Powder Bed Fusion?

We’ve all been a party to the laser wars, in which a tiny clique of powder bed fusion firms are outdoing each other on seeing how many lasers they can...

FIT AG and pro-beam Team up for (DED & PBF) Electron Beam Metal 3D Printing

The world of electron beam 3D printing is suddenly becoming larger. Whereas it was previously dominated by a single company, GE’s Arcam, there have been a number of new entrants...

AZO and AddUp Partner to Automate Powder Handling for Metal 3D Printing

Metal powders are some of the most finicky materials in the 3D printing industry in that, not only do the metal particles require a high level of consistency, sphericity, and...


Shop

View our broad assortment of in house and third party products.