HRL Laboratories developed the ceramic materials with hypersonic flight in mind, as they can withstand the extreme environments and high temperatures that hypersonic flight requires. The Aerospace Systems Directorate’s scientists began assessing the potential of HRL’s materials while searching for new thermocouple radiation shields. The SiOC materials were produced through an additive manufacturing process using a pre-ceramic resin. After the part is manufactured, it is subject to a heat treatment that converts it into a fully ceramic state.
“If a material can withstand those temperatures – roughly 3,200 degrees Fahrenheit – it could be used for hypersonic aircraft engine components like struts or flame holders,” said Jamie Szmodis, a hypersonic research engineer with the Aerospace Systems Directorate.
To get an idea of what hypersonic speed is, consider that current aircraft fly at Mach 1, or more than 768 miles per hour. That’s supersonic speed. Hypersonic speed exceeds Mach 5, meaning that aircraft would be flying at speeds of over 4,000 miles per hour. This would allow for faster military response times, more advanced weapons and much faster travel for both the military and commercial sectors.
The CRADA-MTA is a type of technology transfer agreement that allows for the transfer of materials for testing, meaning that the Air Force can now access HRL Laboratories’ ceramic materials for research purposes.
“Without the material transfer agreement, we would have purchased the samples to test them. We would have been a customer, as opposed to a collaborator,” said Szmodis. “With the agreement we are able to provide test results to HRL and provide feedback that is valuable to both parties.”
Under the agreement, the Aerospace Systems Directorate received five thermocouple radiation shields and 15 sample cylinders manufactured from the SiOC resin. Szmodis established a small team from various directorates and specialties to conduct the tests. Scientists from the AFRL Materials and Manufacturing Directorate, Structural Materials Division, Composite Branch, led by Dr. Matthew Dickerson, conducted materials analysis and heat treatments. The Aerospace Systems Directorate, Aerospace Vehicle Division, Structural Validation Branch scientists, led by Bryan Eubanks, performed mechanical analysis focusing on thermal expansion analysis at temperatures ranging from 500 – 3,500ºF. Scientists at the Arnold Engineering Development Complex’s Propulsion Research Facility performed analysis of the material’s characteristics in a high-enthalpy instrumentation test facility.

A sample of additively manufactured silicon oxycarbide (SiOC) material is tested at Arnold Air Force Base. [Image: Air Force]
“The extreme temperature testing that AFRL performed revealed the limits of our new material and challenged us to improve it,” said Dr. Tobias Schaedler, a senior scientist from HRL.
Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.
[Source: Air Force]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
Print Services
Upload your 3D Models and get them printed quickly and efficiently.
You May Also Like
Understanding Failure and How to Avoid It: Lessons from Forensics and Predictive Analysis in AM
Forensics and predictive failure analysis play a critical role in the safe and effective adoption of additive manufacturing—especially as the technology enters more high-stakes industries. Understanding failure is, ironically, one...
3D Printed Aorta Model Helps Surgeons Remove “Ticking Time Bomb” Artery
Surgeons at The Prince Charles Hospital in Brisbane, Australia, recently carried out an incredibly complex procedure after discovering that a patient’s aorta had expanded to about four times its normal...
3D Printing News Briefs, July 12, 2025: Nerve Repair, Glass Nanostructures, adidas, & More
In this weekend’s 3D Printing News Briefs, we’re starting with medical news from 3D Systems, and then moving on to research about glass nanostructures and synthetic lichen. Then, 3D printing...
How One Chilean Medtech Company Is Reinventing Reconstructive Surgery in Latin America
In the world of medical technology, breakthroughs often come from unexpected corners. Ilan Rosenberg, a Chilean specialist in maxillofacial prosthetics and founder of ArcomedLab, has established one of the most...