HRL Laboratories developed the ceramic materials with hypersonic flight in mind, as they can withstand the extreme environments and high temperatures that hypersonic flight requires. The Aerospace Systems Directorate’s scientists began assessing the potential of HRL’s materials while searching for new thermocouple radiation shields. The SiOC materials were produced through an additive manufacturing process using a pre-ceramic resin. After the part is manufactured, it is subject to a heat treatment that converts it into a fully ceramic state.
“If a material can withstand those temperatures – roughly 3,200 degrees Fahrenheit – it could be used for hypersonic aircraft engine components like struts or flame holders,” said Jamie Szmodis, a hypersonic research engineer with the Aerospace Systems Directorate.
To get an idea of what hypersonic speed is, consider that current aircraft fly at Mach 1, or more than 768 miles per hour. That’s supersonic speed. Hypersonic speed exceeds Mach 5, meaning that aircraft would be flying at speeds of over 4,000 miles per hour. This would allow for faster military response times, more advanced weapons and much faster travel for both the military and commercial sectors.
The CRADA-MTA is a type of technology transfer agreement that allows for the transfer of materials for testing, meaning that the Air Force can now access HRL Laboratories’ ceramic materials for research purposes.
“Without the material transfer agreement, we would have purchased the samples to test them. We would have been a customer, as opposed to a collaborator,” said Szmodis. “With the agreement we are able to provide test results to HRL and provide feedback that is valuable to both parties.”
Under the agreement, the Aerospace Systems Directorate received five thermocouple radiation shields and 15 sample cylinders manufactured from the SiOC resin. Szmodis established a small team from various directorates and specialties to conduct the tests. Scientists from the AFRL Materials and Manufacturing Directorate, Structural Materials Division, Composite Branch, led by Dr. Matthew Dickerson, conducted materials analysis and heat treatments. The Aerospace Systems Directorate, Aerospace Vehicle Division, Structural Validation Branch scientists, led by Bryan Eubanks, performed mechanical analysis focusing on thermal expansion analysis at temperatures ranging from 500 – 3,500ºF. Scientists at the Arnold Engineering Development Complex’s Propulsion Research Facility performed analysis of the material’s characteristics in a high-enthalpy instrumentation test facility.
The Air Force completed a final report of the results in March and delivered it to HRL Laboratories. The study pushed the 3D printed components far beyond their design envelope, and the data generated provided valuable information that is now being used to guide the production of next-generation 3D printed ceramics. These results, and further work by HRL, have the potential to produce materials that can meet hypersonic requirements.“The extreme temperature testing that AFRL performed revealed the limits of our new material and challenged us to improve it,” said Dr. Tobias Schaedler, a senior scientist from HRL.
Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.
[Source: Air Force]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
3D Printing News Briefs, January 11, 2025: Ceramics, Acrylated Vegetable Oil, & More
It’s all about business and materials in today’s 3D Printing News Briefs! First up, GBC Advanced Materials selected XJet’s ceramic solution to scale up its production, and the XSPEE3D metal...
ICON and Lennar to Build 100 3D Printed Homes for the Homeless
Additive construction startup ICON plans to build 100 3D-printed homes. Partnering with Austin, Texas-based homeless charity Mobile Loaves & Fishes, the initiative builds upon 17 3D-printed homes previously completed at...
UNR Researchers and U.S. Army Corps of Engineers Build Bridge from 3D Printed Concrete Bricks
The U.S. Army Engineer Research and Development Center (ERDC), in collaboration with the University of Nevada, Reno and NASA, is advancing the field of additive construction (AC) through the development...
Virginia Tech Lands $1.1M to Bring 3D Printed Affordable Housing to Virginia
Virginia Housing is betting $1.1 million that advanced 3D printing technology can solve the state’s housing challenges. The non-profit has granted these funds to the Virginia Center for Housing Research...