HeyGears

GKN Sinter Metals and Porsche Engineering 3D Print with a New Kind of Steel

RAPID

Share this Article

Steel, particularly stainless steel and tool steel, is a reliable and commonly used material in industries including tooling and biomedical. What is still relatively uncommon, however, is steel material for additive manufacturing. It exists, it’s just not as common as other metal materials – which is a shame as steel has a number of highly useful properties, such as high strength and corrosion resistance. A new steel material recently joined the additive manufacturing market, however, in the form of GKN Sinter Metals‘ 20MnCr5.

20MnCr5 is strong yet ductile, tough yet machineable, and boasts high fatigue strength and wear resistance. Porsche Engineering recently used the material to 3D print components for its e-drive powertrains, namely a conventional front transverse transmission. For optimum benefit, the part with the largest weight reduction potential, the differential housing with a ring gear, was chosen.

The ring gear and the differential housing serve different functions in a conventional transmission. The ring gear is made of specific steel, which is then hardened and ground for precision. The differential housing is usually casted and used for torque transfer from the ring gear to the center bolt and bevel gears. The wide ring gear teeth are supported by a thin, sometimes off-center, disc, which is connected to the differential housing. GKN and Porsche used CAD software and topology structural optimization to design a new shape based on the forces. The maximum available space within the transmission was then defined. All of the inner contours needed for any function, such as bevel gears, side shafts and bearings were subtracted from the body.

Based on the specifications and requirements of the transmission, all loads, including bearing and gear, were applied to the package block. The CAD optimization tool created a structure capable of taking all required loads. The resulting structure cannot be manufactured by any other means than additive manufacturing.

The inner shape is supported only by a system of organic beams and structures necessary for its structural integrity. These shapes cannot be machined by conventional methods. The structure also requires special features like holes to eject the unused metal powder after manufacturing, and openings on the outer diameter so that collected oil can drain in the inner area of the differential. These features can all be planned in the CAD model.

a) Conventional differential of front transverse transmission, b) package model of differential

The final finite element analysis showed a homogenous stress level and allowed wall thickness to decrease, which is not possible with other manufacturing methods due to machine limits. Based on original load requirements, the team was able to decrease weight by 13%, or about one kilogram; they also achieved 43% decrease of tooth stiffness variations in radial direction, 69% decrease of tooth stiffness variations in tangential direction, and 8% reduction of inertia.

Automobile manufacturers are constantly looking for ways to improve vehicle efficiency, whether it’s reducing weight, creating more efficient internal combustion engines, or improving powertrains. More and more of these manufacturers are turning to additive manufacturing to prototype and even manufacture parts, many of them with geometries impossible to achieve with traditional manufacturing. Add that to the materials that additive manufacturing offers, such as GKN’s 20MnCr5, and manufacturers are capable of creating complex, lightweight parts that withstand high wear.

GKN has been exploring the benefits of automotive additive manufacturing, and this recent application highlights several key capabilities of 3D printing. Read the full case study at the GKN Sinter Metals blog.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Images provided by GKN Sinter Metals]

 



Share this Article


Recent News

Supreme Court Says “Yes” to Regulating Ghost Guns—Including 3D Printed Guns

Australia’s Untapped Potential as a Disruptive Innovator: SPEE3D CTO Steven Camilleri Explains Why He Wants to Make Stuff There



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

AM Coalition’s 2025 DC Legislative Fly-In: The Time Is Now for U.S. 3D Printing Policy

The Additive Manufacturing (AM) Coalition is set to host its third annual DC Legislative Fly-In from May 6 to 8, 2025, in Washington, D.C. The event, which aims to strengthen...

ATLANT 3D’s Atomic-level 3D Printing Gets $15M in Series A+

After completing the hard work of developing a complete 3D printer in 2024, ATLANT 3D secured a $15M Series A+ round, following its Series A round in 2022. Both rounds were...

3D Printing Financials: AML3D and Titomic Bet Big on U.S. Growth

Australia’s leading metal 3D printing companies, AML3D and Titomic, are expanding fast, but their financial results show different paths. AML3D (ASX: AL3) delivered a 206% revenue increase, crossing the AUD...

3D Printing Webinar and Event Roundup: February 23, 2025

This week’s roundup of 3D printing webinars and events has something for everyone—software, metals, casting, and even golf clubs. Read on for all the details! February 23 – 26: 3DEXPERIENCE...