AMR Software
AMR Data Centers

Additive Free-Form Casting Process Combines the Advantages of 3D Printing and Injection Molding

Share this Article

We’ve seen all sorts of 3D printing innovations coming from the many institutes of Fraunhofer, Europe’s largest application-oriented research organization, from large-scale SLM 3D printing and a real-time autonomous 3D scanning system to a powder jet that solves issues with laser metal deposition printing.

The latest comes from the Fraunhofer Institute for Production Engineering and Automation (IPA) – researchers there have come up with a new manufacturing process that combines the best advantages of 3D printing and injection molding technologies, which they have dubbed additive free-form casting. The researchers recently completed a feasibility study on their new method during a preliminary research project, and successfully fabricated several different prototypes.

Color FFF 3D printing from XYZprinting [Image: Sarah Goehrke for 3DPrint.com]

By now we know the many advantages that 3D printing has to offer – it’s faster and less expensive than injection molding for fabricating prototypes, custom-made products, and small series, and the technology also makes it possible to create integrated functionalities and complex structures.

However, we also know that the technology is not entirely without its faults.

One of the more popular additive manufacturing methods is extrusion-based 3D printing (e.g., FFF/FDM) which uses a nozzle to place print material in parallel strands. It sounds easy enough, but the process can sometimes result in weld lines and porosity issues.

“The material is not ‘full’ in the mold, as in casting,” explained Fraunhofer IPA expert Jonas Fischer in a translated quote. “As a result, the mechanical properties of the component are worse.”

It can also take quite a long time for large 3D printed components to be fully built up, and in terms of polymers, only thermoplastic materials can be processed with FFF processes – it’s not possible to print thermosets, which can be melted and formed only once, staying solid once solidified.

In additive free-form casting, the shell of the component is built up using extrusion-based 3D printing. Subsequently, a dosing unit in the 3D printer fills the mold with a two-component mixture.

Fraunhofer IPA researchers sought to minimize these issues, and print with new materials, using additive free-form casting, saving on time and increasing stability. First, they 3D print the shell of the component out of water-soluble plastic polyvinyl acetate (PVA).

Then the envelope is filled automatically with the precise amount of either epoxy resin or polyurethane; the latter only takes three minutes to dry. Only after this can the component, according to Fraunhofer IPA, “be arbitrarily extended in height with the same principle.”

Once the component has cured, the mold is then removed in a water bath, resulting in a 3D printed piece that has properties not unlike an object created with injection molding.

A special dosing unit, meant for two-component materials, was installed by the researchers in their 3D printer in order to properly pour the filling material into the case. This makes it possible to complete the whole process in a single go – no interruptions necessary. Additionally, it can be completely digitized and works with resins and heat-resistant thermosets, and the process is also much quicker.

Fischer said in a translated quote, “You just have to print the envelope, leaving the rest to gravity.”

Components manufactured using additive free-form casting are much more stable, as the mold is completely filled with material, leaving no room for air bubbles, and can also result in weight savings when complex components in smaller quantities are needed.

The IPA researchers demonstrated the feasibility of the process and realized several prototypes.

Fraunhofer IPA’s new additive free-form casting method works for multiple industries and applications as well.

“Electrically insulating components such as sockets can be manufactured with it,” said Fischer in a translated quote. “The process is also suitable for foams and upholstery required for security elements.”

The researchers are now on the hunt for industry partners to help with future development of the process on its way to series maturity, as well as companies that have ideas on different industry areas that could use thermoset applications. Fraunhofer IPA is also in need of material manufacturers who can work with its researchers to improve properties of the two-component fixture.

Discuss this new process, and other 3D printing topics, at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

[Source/Images: Fraunhofer IPA]

 



Share this Article


Recent News

3D Printed Heat Exchanger Specialist Conflux Technology Expands into the UK

Betting on Localization: MRCA’s Jason Azevedo Explains Why He Invests in the Future of US Manufacturing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Printing Money Episode 28: Recent M&A and More with Joris Peels, 3DPrint.com

Welcome to Episode 28 of Printing Money.  For this one Danny is joined by our own, Joris Peels (Executive Editor, 3DPrint.com). This crossover-pod is indeed quite meta-level but it’s not...

Featured

Rob Higby: How Continuum’s Scrap-to-Powder Model Caught Siemens’ Attention

Continuum Powders has spent over a decade working on a bold idea: why mine new metal when high-quality material is already flowing through today’s factories as scrap? Now, thanks to...

Apples & Philips: From Sand to Customer or the Joys of Vertical Integration

“From sand to customer” was originally the business philosophy of Philips. The Dutch electronics firm was a pioneer in lightbulbs and later leveraged its expertise into X-ray tubes, radios, shavers,...

3DPOD 248: AM in the Marines and Advanced Technologies with Howie Marotto, EWI

I really loved this episode of the 3DPOD with Howie Marotto, Additive Manufacturing Business Director at EWI. A Marine with deep logistics experience gets to tell us how viable 3D...