Additive Free-Form Casting Process Combines the Advantages of 3D Printing and Injection Molding

Share this Article

We’ve seen all sorts of 3D printing innovations coming from the many institutes of Fraunhofer, Europe’s largest application-oriented research organization, from large-scale SLM 3D printing and a real-time autonomous 3D scanning system to a powder jet that solves issues with laser metal deposition printing.

The latest comes from the Fraunhofer Institute for Production Engineering and Automation (IPA) – researchers there have come up with a new manufacturing process that combines the best advantages of 3D printing and injection molding technologies, which they have dubbed additive free-form casting. The researchers recently completed a feasibility study on their new method during a preliminary research project, and successfully fabricated several different prototypes.

Color FFF 3D printing from XYZprinting [Image: Sarah Goehrke for 3DPrint.com]

By now we know the many advantages that 3D printing has to offer – it’s faster and less expensive than injection molding for fabricating prototypes, custom-made products, and small series, and the technology also makes it possible to create integrated functionalities and complex structures.

However, we also know that the technology is not entirely without its faults.

One of the more popular additive manufacturing methods is extrusion-based 3D printing (e.g., FFF/FDM) which uses a nozzle to place print material in parallel strands. It sounds easy enough, but the process can sometimes result in weld lines and porosity issues.

“The material is not ‘full’ in the mold, as in casting,” explained Fraunhofer IPA expert Jonas Fischer in a translated quote. “As a result, the mechanical properties of the component are worse.”

It can also take quite a long time for large 3D printed components to be fully built up, and in terms of polymers, only thermoplastic materials can be processed with FFF processes – it’s not possible to print thermosets, which can be melted and formed only once, staying solid once solidified.

In additive free-form casting, the shell of the component is built up using extrusion-based 3D printing. Subsequently, a dosing unit in the 3D printer fills the mold with a two-component mixture.

Fraunhofer IPA researchers sought to minimize these issues, and print with new materials, using additive free-form casting, saving on time and increasing stability. First, they 3D print the shell of the component out of water-soluble plastic polyvinyl acetate (PVA).

Then the envelope is filled automatically with the precise amount of either epoxy resin or polyurethane; the latter only takes three minutes to dry. Only after this can the component, according to Fraunhofer IPA, “be arbitrarily extended in height with the same principle.”

Once the component has cured, the mold is then removed in a water bath, resulting in a 3D printed piece that has properties not unlike an object created with injection molding.

A special dosing unit, meant for two-component materials, was installed by the researchers in their 3D printer in order to properly pour the filling material into the case. This makes it possible to complete the whole process in a single go – no interruptions necessary. Additionally, it can be completely digitized and works with resins and heat-resistant thermosets, and the process is also much quicker.

Fischer said in a translated quote, “You just have to print the envelope, leaving the rest to gravity.”

Components manufactured using additive free-form casting are much more stable, as the mold is completely filled with material, leaving no room for air bubbles, and can also result in weight savings when complex components in smaller quantities are needed.

The IPA researchers demonstrated the feasibility of the process and realized several prototypes.

Fraunhofer IPA’s new additive free-form casting method works for multiple industries and applications as well.

“Electrically insulating components such as sockets can be manufactured with it,” said Fischer in a translated quote. “The process is also suitable for foams and upholstery required for security elements.”

The researchers are now on the hunt for industry partners to help with future development of the process on its way to series maturity, as well as companies that have ideas on different industry areas that could use thermoset applications. Fraunhofer IPA is also in need of material manufacturers who can work with its researchers to improve properties of the two-component fixture.

Discuss this new process, and other 3D printing topics, at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

[Source/Images: Fraunhofer IPA]

 

Share this Article


Recent News

FIT AG and pro-beam Team up for (DED & PBF) Electron Beam Metal 3D Printing

3D Systems Expands in Denver to Address Demand for 3D Printed Products



Categories

3D Design

3D Printed Art

3D Printed Guns

3D Printer Reviews


You May Also Like

3D Printing Webinar and Event Roundup: May 1, 2021

We started this weekly roundup of webinars and virtual events almost exactly one year ago, to give you a quick, easy way to sift through the increased amount of online...

6K to Develop Battery Materials with $25M Investment

After just a few years in existence, 6K has made itself increasingly well-known in the 3D printing industry with its unique metal materials production technology. The startup suggests that its...

3D Systems Introduces 3D Printed Polymer-Metal Guides for MF Surgeries

3D Systems (NYSE: DDD) has long been breaking ground in the personalized medicine space with its Virtual Surgical Planning (VSP), which can help reduce the amount of time that patients...

Materialise Opens €7.5M Metal 3D Printing Facility

Belgian 3D printing provider Materialise is growing. Not only did it recently announce an option to acquire MES software developer Link3D, but the company has also opened a new 3,500...


Shop

View our broad assortment of in house and third party products.