Researchers Develop New Method of 3D Printing Living Bio-Tissues for Cancer Research

Share this Article

The University of British Columbia (UBC) Okanagan campus is a research hub located in the middle of British Columbia’s beautiful Okanagan Valley, and ranked among the world’s top 20 public universities. We’ve seen plenty of innovative 3D printing research coming out of UBC Okanagan, and a lot of the work has centered around the biomedical field.

Currently, researchers from the university’s School of Engineering and Department of Chemistry are working on a new 3D printing method for producing living bio-tissues, which could one day be a valuable tool for advancing cancer research and tissue replacement.

Keekyoung Kim, UBC Okanagan’s School of Engineering.

Assistant engineering professor Keekyoung Kim explained, “One of the ultimate goals in biomedical engineering is to recreate viable, healthy and living tissues. The applications are staggering and could range from helping people suffering from ailments such as severe burns or organ failure to creating artificial tissues for research into diseases like cancer.”

Kim’s team developed a new method, called direct laser bioprinting (DLBP), which solidifies a hydrogel into a complex cross-linked platform with the help of an inexpensive laser diode.

The system has successfully 3D printed artificial tissue at a resolution much finer than currently possible with other methods, and is able to support live, healthy cells with 95% effectiveness. These engineered tissues are strong enough to provide a structure for the living cells to live, and even thrive.

The researchers published a paper on their work, titled “A Novel, Well-Resolved Direct Laser Bioprinting System for Rapid Cell Encapsulation and Microwell Fabrication,” in the Advanced Healthcare Materials journal; co-authors include UBC Okanagan graduate students Zongje Wang and Xian Jin, Zhenlin Tian, chemistry professor Frederic Menard, engineering professor Jonathan Holzman, and Kim.

The abstract reads, “A direct laser bioprinting (DLBP) system is introduced in this work. The DLBP system applies visible-laser-induced photo-crosslinking at a wavelength of 405 nm using the photoinitiator VA-086. It is shown that such a system can fabricate vertical structures with fine features (less than 50 µm) and high cell viability (greater than 95%). Experimental characterizations and theoretical simulations are presented, and good agreement is seen between the experiments and theory. The DLBP system is applied to the fabrication of (1) cell-laden hydrogel microgrids, (2) hydrogel microwells, as well as a test of (3) cell encapsulation, and (4) cell seeding. The DLBP system is found to be a promising tool for bioprinting.”

Photographs of the practical system setup as viewed from different angles.

Copious amounts of research have been done regarding 3D printing tissue, and Kim says that this kind of work is important because the demand for biological models that researchers can grow cancer cells on in three dimensions is so high. He also stated that living cells, like the kind in his team’s work, are very sensitive to biological, chemical, and mechanical conditions that you’ll only see in a 3D environment.

“These findings show a promising future for tissue engineering and medical research. We’re already looking at applying the technology to cancer research,” Kim said.

The research was part of an interdisciplinary project from UBC Okanagan’s School of Engineering and Department of Chemistry, and supported by Discovery Grants from both the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canadian Foundation for Innovation John R. Evans Leaders Opportunity Fund. Holzman says that this type of research is “perfectly suited to interdisciplinary research.”

Holzman said, “Bio-tissue printing applies knowledge in biology, chemistry, and microfabrication toward the health sciences. I think our recent success in bio-tissue printing came about from the multidisciplinary nature of our team.”

The UBC Okanagan team tested if their 3D printed artificial tissue would be able to provide proper support for healthy, living cells by building a pattern which, as the university put it, “encapsulated a commonly used line of breast cancer cells.”

Kim explained, “The tissue pattern, which has extremely fine features and high cell viability, firmly demonstrates that our system has real potential to create functional, engineered tissue. I’m excited by what this could bring to biomedical research.”

Discuss this research, and other 3D printing topics, at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

[Images: UBC Okanagan]

 

Share this Article


Recent News

Velo3D’s $8 Million IP Deal with SpaceX: A Lifeline or a Double-Edged Sword?

Canadian 3D Printing OEM Mosaic Pulls in Over $20M in Latest Financing Round



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Chromatic 3D Materials Raises $6M to Drive 3D Printing of Flexible Materials

Amid much doom and gloom, we are seeing a notable amount of funding for the 3D printing market, with 3DEO, Mantle, Orbex, Q5D, CORE Industrial Partners, Replique, Inkbit, and others...

Featured

6K Lands $82M for Batteries and 3D Printing Powders in Series E Round

6K, the Massachusetts-based parent company of 6K Energy and 6K Additive, has secured $82 million in the opening of its Series E round, with the round planned to close out...

3D Printing Webinar and Event Roundup: August 18, 2024

In this week’s Webinar and Event Roundup, Stratasys continues its advanced training courses and its U.S. tour, while TriMech hosts a Technology Showcase, Endeavor 3D offers a webinar about robotics...

Improving Intelligent Crop Breeding with 3D Printed Sugar Beet Plant

A team of German researchers are working to bring farming into the future by developing AI-assisted crop pipeline improvement. By using laser scanning and consumer-grade FDM 3D printing, they were...