Syntactic foams are a material made by mixing an epoxy or plastic resin with billions of microscopic spheres, traditionally made from glass or ceramic. The spheres in the foams are hollow, so any parts or components made using them are considerably lighter than parts made with traditional materials. The shape of the spheres allows for the weight reduction of the part without sacrificing the part’s strength or durability. Syntactic foam parts have been used heavily in the production of state-of-the-art submarines like the new Alvin deep-sea explorer and the Challenger Deep used by James Cameron to make his record-breaking mariana trench dive back in 2012.
These parts are traditionally made using injection molding technology, however this process limits the shape and complexity of the part, with many components needing to be joined together with adhesives or fasteners, a process that can cause weakness or vulnerabilities. The 3D printing process eliminates the need for highly complex parts to be joined as the entire part can be manufactured at the same time. Not only does this reduce the manufacture and production time of the parts, but it improves the overall strength and durability of each component.

Ashish Kumar Singh (left), a doctoral student of Nikhil Gupta (right), associate professor of mechanical and aerospace engineering, reported the development of syntactic foam filaments and processes to 3D print them using off-the-shelf commercial printers. [Image: NYU Tandon]
“Our focus was to develop a filament that can be used in commercial printers without any change in the printer hardware. There are a lot of parameters that affect the printing process, including build-plate material, temperature, and printing speed. Finding a set of optimum conditions was the key to making the printing of high-quality parts possible,” said Gupta.

The structure of a glass, hollow-particle filled, vinyl-ester-matrix syntactic foam. The image was acquired using a scanning electron microscope. [Image: Nikhil Gupta]
They settled on making their filament from a high-density polyethylene plastic, a very strong material often used in the manufacturing of industrial-grade components, rather than a ceramic or a resin, and the microbeads were made from a recycled coal waste byproduct called fly ash. To prevent the microbead spheres from clogging the nozzle they were made with a specific size and shape that allows them to easily flow through the 1.7 mm 3D printer nozzle. Each individual sphere ranges from 0.04 mm to 0.07 mm in diameter. Initial tests of the 3D printed components have revealed that they displayed tensile strength and density comparable to components made using injection molding.
“The results show that the properties of 3D-printed syntactic-foam components are at par with the widely used traditional injection-molded parts of the same material,” explained Ashish Kumar Singh, a doctoral student working under Gupta.

A team of materials engineers at the NYU Tandon School of Engineering developed syntactic foam filaments and processes to 3D print them using off-the-shelf commercial printers. [Image: NYU Tandon]
The next step for Gupta and his team is to focus on optimizing the material properties for a wide range of applications, including the production of parts used in underwater vehicles capable of functioning at great depths. In addition to his team at NYU Tandon, Gupta also worked closely with his colleagues from the National Institute of Technology Karnataka, Surathkal in India and the project was supported by the U.S. Office of Naval Research.
Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.
[Source: NYU Tandon]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
3DPOD 240: Mark Barfoot (AMUG), Electrochemical Polishing at Voxel Innovations
Mark Barfoot is a 3D printing veteran who began by introducing additive manufacturing to traditional firms before becoming Managing Director of the Multi-Scale Additive Manufacturing Lab at the University of...
3DPOD 239: Joe Calmese, ADDMAN President & CEO
Joe Calmese talks to us about the financing of additive manufacturing, machine prices, and utilization. He runs ADDMAN, a large, high-end service bureau that produces many critical components, including defense...
American Axle & Manufacturing Acquires GKN Powder Metallurgy and GKN Automotive for $1.44B
American Axle & Manufacturing (AAM), a publicly listed supplier of automotive driveline and drivetrain components headquartered in Detroit, has acquired Dowlais Group plc, the parent company of GKN Automotive and...
3DPOD 238: AM in the Nuclear Industry with Adam Travis, Westinghouse
Adam Travis, Global AM Program Leader at Westinghouse, is lifting the veil of secrecy surrounding 3D printing in the nuclear industry for us in this episode of the 3DPOD. He...