The research team was led by Bor-Kai Hsiung, a postdoctoral scholar at Scripps Institution of Oceanography at the University of California San Diego. His research started when he was a PhD student at the University of Akron, and he assembled an international team of biologists, physicists and engineers. The team began investigating the spider’s photonic structures using multiple techniques that included light and electron microscopy, hyperspectral imaging, imaging scatterometry and optical modeling. They used the results to come up with hypotheses about how the spider created its rainbows.
Those hypotheses were then tested using a nano 3D printing technique, in which several models were 3D printed. These models helped the researchers to discover that the iridescence came from specialized abdominal scales, which combine airfoil-like microscopic 3D contours with nanoscale diffraction grating structures on the surface. The interaction between the surface nano-diffraction grating and the microscopic curvature of the scales allows for the separation and isolation of light into its component wavelengths at finer angles and smaller distances than are possible with current engineering technologies.
“One of the main questions that I wanted to address in my Ph.D. dissertation was ‘how does nature modulate iridescence?'” said Hsiung. “From a biomimicry perspective, to fully understand and address a question, one has to take extremes from both ends into consideration. I purposefully chose to study these tiny spiders with intense iridescence after having investigated the non-iridescent blue tarantulas.”
The study may result in new color technology, as it introduces new ideas that weren’t possible before. As is so often the case, though, the researchers found that nature is capable of things that humans, even with our advanced technology, are not.
The discoveries made by the research team may be used to overcome current limitations in spectral manipulation and to reduce the size of optical spectrometers for applications where fine-scale resolution is required for something very small, such as instruments on space missions or wearable chemical detection systems.“As an engineer, what I found fascinating about these spider structural colors is how these long evolved complex structures can still outperform human engineering,” said Radwanul Hasan Siddique, a postdoctoral scholar at Caltech. “Even with high-end fabrication techniques, we could not replicate the exact structures. I wonder how the spiders assemble these fancy structural patterns in the first place!”
3D printing played a vital role in the discoveries that were made, said the researchers.
“Nanoscale 3D printing allowed us to experimentally validate our models, which was really exciting,” said Matthew Shawkey of the University of Akron. “We hope that these techniques will become common in the future.”
The research was documented in a study entitled “Rainbow peacock spiders inspire miniature super-iridescent optics,” which you can access here. Authors include Bor-Kai Hsiung, Radwanul Hasan Siddique, Doekele G. Stavenga, Jürgen C. Otto, Michael C. Allen, Ying Liu, Yong-Feng Lu, Dimitri D. Deheyn, Matthew D. Shawkey and Todd A. Blackledge.
Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.
[Source: UCSD]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
HP and Global Steel Giant ArcelorMittal Announce Strategic 3D Printing Collaboration
Fortune Global 500 company ArcelorMittal, the world’s second-largest supplier of steel, has announced a strategic collaboration with HP to develop new additive manufacturing (AM) applications for ArcelorMittal’s steel powders. Via...
Tomorrow: AM Investment Strategies Returns with Free Online Executive Roundtable
With a new Trump Administration and uncertain economic markets, the 3D printing industry is at a pivotal point in its growth. There’s no one who knows this better than the...
3D Systems Expands Product Line ahead of Formnext 2024
At Formnext 2024, 3D Systems (NYSE: DDD) will be introducing a suite of new technologies and materials aimed at advancing production capabilities across additive manufacturing (AM) sectors. Showcasing developments in...
Metal Wire 3D Printer OEM ValCUN Announces Plans for 2025 Expansion
ValCUN, a Belgian original equipment manufacturer (OEM) of wire-based metal additive manufacturing (AM) hardware, has announced that the company has entered the next phase of its growth trajectory, making key...