LightFab: Selective Laser Etching, Subtractive 3D Printing with Transparent Materials
The LightFab 3D printer is for makers and inventors who are involved in more complex projects, aspiring to work with glass as well as etching. The Germany-headquartered company has created a multi-faceted machine in the LightFab, which includes all the following along with the 3D microscanner:
- High precision 3-axis system for stepping
- FS-laser
- Camera and vision system for automatic alignment
- Laser safety and an innovative CAD/CAM/nc software package
LightFab created the innovative new hardware specifically for their selective laser etching, a ‘subtractive’ 3D printing process. It can also be used for laser writing in materials that are transparent, such as:
- Waveguide writing
- 2-photon-polymerization
- Backside ablation
- Crack-free markings
“We offer you the production of glass micro-parts spanning from prototypes, small and large lot sizes or enable you to produce the parts on your own using our micro scanners,” states the LightFab team.
SLE is a two-part process, consisting of rapid laser radiation which “is focused to micrometer-sized spots into a material that is transparent to the wavelength of the laser radiation used,” as Martin Hermans, Jens Gottmann, and Jürgen Ortmann of LightFab explain, continuing:
“The laser radiation is absorbed, only at the focal spot, by the material because of nonlinear absorption processes occurring at the high intensities that are applied (>1012W/cm2). The absorbed energy leads to internal heating and subsequent quenching of the material in a very confined volume, resulting in a permanent modification of the transparent material. This laser modification does not consist of cracks and can be applied with extreme precision.”
In the second part, the piece is moved into an etching bath.
“The etching starts at the surface and works its way into the workpiece, washing out all the material that was previously modified with the laser radiation,” the team explains.
Users interested in such technology should benefit from SLE as little stress is placed on the material, and support structures are not necessary.
“Although SLE surfaces feature an initial roughness on the order of Ra ~200nm, the surfaces do not have microcracks or sub-surface defects that cause failure in cases of mechanical load. This makes applications in the field of flexure bearings possible,” states the LightFab team.
“The current state of the technology in fused silica is that first-time-right machining is possible for complex 3D parts <7mm in height with a precision of about 10μm and a maximum tunnel length of 10mm. Larger precision or longer tunnel lengths are feasible, but often make iterations of production and measurements necessary before the part fits the precision requirements.”
Glass parts are useful for the medical industry, precision mechanics, and optics. With SLE laser technology, 3D devices can be made from materials most users have not considered, such as silica, ultralow expansion glass, and sapphire. The technology also allows for parts to be made with more complex interiors like cavities and tunnels, as well as other moving parts.
LightFab has collaborated with other companies to create items such as the following:
- Cell-sorter for antibiotic resistance tests
- Microfluidical cross-section chip in fused silica
- Lava nozzle inset for laser particle accelerators
- Microfluidical chip for capillary electrophoresis
You can find out more about LightFab here, as well as downloading the data sheet for the LightFab 3D printer and exploring their other products. Discuss in the LightFab forum at 3DPB.com.
[Source: LightFab via Industrial Laser Solutions]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
Print Services
Upload your 3D Models and get them printed quickly and efficiently.
You May Also Like
3DPOD 252: What’s Really Happening in Bioprinting, with Mark Skylar-Scott, Stanford University
Mark Skylar-Scott is an experienced bioprinting researcher now working at one of the foremost bioprinting labs in the world at Stanford University. We talk about inexpensive desktop bioprinters and their...
Printing Money Episode 28: Recent M&A and More with Joris Peels, 3DPrint.com
Welcome to Episode 28 of Printing Money. For this one Danny is joined by our own, Joris Peels (Executive Editor, 3DPrint.com). This crossover-pod is indeed quite meta-level but it’s not...
3DPOD 251: 3D Printing for Football Helmets with Kodiak Brush, LIGHT Helmets
Kodiak Brush grew up playing football before working on crash testing. Sometimes someone’s career can seem like it is inexorably building up to one goal. And with Kodiak now making...
3DPOD 250: Dieter Schwarze, Nikon SLM Solutions
Dieter Schwarze is a true 3D printing icon. Here we get the twisting, arduous tale of Dieter’s journey into additive. Starting with inkjet, SLA and lots of other technologies, Dieter´s...