Earlier this week, we heard about a new 3D printing method based on ultrasonic manipulation technology. Lithuanian company Neurotechnology‘s Ultrasound Research Group is led by research engineer Dr. Osvaldas Putkis, who in a video introduced their new method with a prototype machine.
Dr. Putkis shows off different components of the machine, which includes an ultrasonic array, mounted camera, and laser. At a glance it looks like a desktop 3D printer, but this is no extrusion-based technology. The proof of concept demonstrated is a non-contact assembly of a printed circuit board (PCB) which itself isn’t so much 3D printed as it is put together — but this initial showing is not all that Neurotechnology has up its research sleeves.
Below is Dr. Putkis’ introduction to ultrasonic manipulation technology, with a look at the prototype machine and its capability in non-contact creation:
So what are they planning? Dr. Putkis answers A Few Questions For us to fill us in more about this patent-pending technology.
What inspired work with ultrasonic manipulation technology for use with 3D printing technology?
“We were intrigued by the versatility of ultrasonic manipulation. As it is a non-contact handling method, it is possible to manipulate materials and components that have very different mechanical properties and shapes, not to mention its ability to handle small or sensitive components. We saw the opportunity to use this technology to build a ‘universal ultrasonic gripper’ that would improve 3D printing technology.”
What can you tell us about the new 3D printing technology?
“The new technology will employ ultrasonic manipulation for positioning various components (such as electronic components) and/or depositing material (such as plastics). This will enable the development of more general and versatile printers, that are capable of, say, printing whole electronic devices.”
How does 3D printing incorporating ultrasonic technology compare with existing 3D printing techniques?
“Current 3D printing techniques can only print the particular material they are designed for. We believe that ultrasonic manipulation technology will enable the creation of printers that can not only deposit certain materials but also assemble electronic circuits or deposit a wide range of materials. In other words, it would add versatility to the 3D printers. However, things like printing speed, component welding and dispensing approaches need to be addressed and researched before such a technology could be applied in the 3D printing process.”
What have you created using this method so far? What kinds of applications will this extend to?
“We have built an early prototype that can assemble simple electronic circuits. An array of ultrasonic transducers is used for non-contact transportation and positioning of electronic components and a laser is used to solder those components to a PCB board, also in a non-contact way. An on-board camera is used to coordinate the whole process, detect the PCB and component positions, calibrate the laser, etc. Currently, the prototype is a technology-demonstrator and can only handle components that are not smaller than approx 0.5mm. However, if higher frequency ultrasonic waves would be used, even the smallest electronic components could be manipulated. This is a challenge for pick-and-place machines and will probably become an even a bigger issue as the size of electronic components continues to shrink in the future. However, if we want to create a more general printer, we still need to implement the deposition process of other materials or components.”
Will this technology eventually be commercialized?
“There is still a lot of research and development to be done before this technology will find its way to end-user products. We are seeking partnerships that would help speed up the development and commercialization of this technology.”
As partnerships remain a key path forward for many in the 3D printing industry, we’ll be interested to follow along with any future collaborations that move ultrasonic manipulation further into 3D printing. Share your thoughts in the Neurotechnology forum at 3DPB.com.
[All images: Neurotechnology via YouTube screenshot]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
Print Services
Upload your 3D Models and get them printed quickly and efficiently.
You May Also Like
Heating Up: 3D Systems’ Scott Green Discusses 3D Printing’s Potential in the Data Center Industry
The relentless rise of NVIDIA, the steadily increasing pledges of major private and public investments in national infrastructure projects around the world, and the general cultural obsession with AI have...
3DPOD 260: John Hart on VulcanForms, MIT, Desktop Metal and More
John Hart is a Professor at MIT; he´s also the director of the Laboratory for Manufacturing and Productivity as well as the director of the Center for Advanced Production Technologies....
Etsy Design Rule Change Reduces Selection of 3D Printed Goods
Online marketplace Etsy has implemented a rule change requiring all 3D printed goods on the site to be original designs. The update to the site’s Creativity Standards states, ¨Items produced using...
E-Beam OEM Wayland Additive Partners with USC Racing to 3D Print Titanium Exhaust Collector
Every year, standards organization SAE International holds a competition called Formula SAE, in which students from both undergraduate and graduate programs design, build, and race small formula-style race cars. For...