Exone end to end binder jetting service

Case Study: 3D Printing and WINDFORM Aid in the Design of Motorcycle Components

INTAMSYS industrial 3d printing

Share this Article

The world of motorcycle racing is a flashy and exciting one, but there’s a lot of work that happens behind the scenes before a bike can ever get onto the track. CRP Technology recently worked on a bike for a Moto3 customer that required a new front air inlet. Testing had shown that increasing airflow to the air box improved the engine’s performance, so the engineering team decided on a new, longer air inlet design, with an opening at the front side of the fairing for direct air flow with less turbulence.

The team wanted to avoid having to modify the existing frame and triple clamps, instead creating a new design that would fit the existing platform. They reverse engineered the airbox by scanning it and reassembling it in CAD, which allowed them to design a new air inlet model based on the available space within the current airbox and frame. Once a first draft had been created, a prototype was 3D printed in CRP’s WINDFORM GF 2.0, which allowed them to perform multiple tests with multiple prototypes at low cost.

The first prototype showed that a few sections needed to be changed due to the lack of space available under the lower triple clamp, an issue that would be further complicated when the bike was cornering and braking. For a creative way around the issue, the engineers created a portion of the duct with WINDFORM RL, a recently introduced rubberlike composite material. The material was used for the bottom part of the duct, in the fork and triple clamp area, and bonded to the remainder of the duct, which was 3D printed with WINDFORM XT 2.0. This would allow strong airflow, and when the rider braked, the front fender could move up and collapse the inlet duct without any damages due to the flexible material.

The second prototype revealed that more changes needed to be made. The flexible section of the duct was too short, and the front forks could touch the area where the two sections were bonded when steering travel was checked from lock to lock position. The duct was also too close to the front wheel in the maximum braking position, and the front fender contact area on the soft part of the duct was too large, giving the rider a feeling of drag on the steering.

The two sections of the inlet were carefully bonded together

The team decided to reduce the portion of the inlet that would make contact with the fender to reduce the drag. The flexible part made in WINDFORM RL was enlarged, and bonded to the front and central part of the inlet, which was 3D printed with WINDFORM XT 2.0 to reduce the weight of the component. The final prototype fit all requirements.

Selective laser sintering, or SLS, was used to 3D print the parts for the numerous iterations of the component, and without it, the prototyping process would have taken much longer, cost a great deal more, and likely not have been as successful. Designing in CAD gave the engineers much more design flexibility than they would have had otherwise, and being able to work with multiple 3D printing materials allowed them to easily adapt the part to the needs of the bike.

CRP Technology’s WINDFORM materials have been used in the fabrication of everything from drones to masks, and this latest case study shows again how versatile the materials are – not to mention the versatility that 3D printing brings to what what otherwise would have been much more complicated design processes. Discuss in the WINDFORM forum at 3DPB.com.

 

Share this Article


Recent News

GE Additive Partnership to Establish BEAMIT Metal 3D Printing Powerhouse

Design for Disruption: 3D Printing Design for Installation



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Dream 3D Printing Soonicorns: Essentium, ICON & More

As of July 2021, 291 companies achieved the coveted mythical $1 billion status, far surpassing any previous year’s peak, according to financial platform Crunchbase. With 2021 proving to be a...

Massive 3D Printed Park Erected in Shenzen, China

Forget the mutually reinforcing buildup of their respective militaries – the real battle between the United States and China is in the field of 3D printing! You’ve probably heard of...

Featured

3D Printing Innovator’s Roundtable Webinar: Ditching DfAM and Embracing Design Freedom

In an industry where change is constant and unpredictable, professionals across the manufacturing industry have turned to additive manufacturing (AM) to overcome design and supply chain challenges. But conventional AM...

Startup Accelerator, Singapore: Dental 3D Printing, Services, and More

This is the eighth article detailing the 3D printing startup scene in Singapore. Teehee Dental Works Teehee Dental Works is a dental lab and dentist with a difference. Along with...


Shop

View our broad assortment of in house and third party products.