Bubble Printing: Texas Researchers Develop New 3D Printing-like Method to Fabricate Quantum Dots

RAPID

Share this Article

Semiconductor quantum dots are used in a number of applications, including light-emitting devices, displays and sensors, thanks to their properties of tunable fluorescence wavelength, narrow bandwidth and high brightness. Most of those applications require the dots to be very precisely patterned with targeted properties on solid substrates. Unfortunately, typical direct-write printing methods such as inkjet and gravure printing are limited in their resolution and structural complexity, as well as requiring a lot of post-processing time.

A group of researchers led by Professor Yuebing Zheng from the University of Texas at Austin has developed a new method of quantum dot patterning, and it’s similar to 3D printing. It even has a great name – it’s called bubble printing.

“Bubble printing technique is a direct-print technique which uses a microbubble generated using low-power laser beam to pattern nanoparticles on a substrate,” University of Texas at Austin graduate student Bharath Rajeeva tells 3DPrint.com. “This is similar to 3D printing, wherein the patterns are defined based on the movement of a either a laser beam/nozzle. However, our bubble printing technique is focused on gaining higher resolution and fabricating patterns at the nano/micro scale.”

The research was published in a new paper entitled “High-Resolution Bubble Printing of Quantum Dots,” which you can access here. The bubble printing technique allows for quantum dots to be precisely patterned on plasmonic substrates with submicron resolution of greater than 700 nm linewidth and strong adhesion. It also allows for the dots to be printed on flexible substrates and can be integrated with smartphones to realize haptic integration.

The technique works by using a single low-powered laser beam to generate a sub-micron-sized bubble at the interface of a colloidal suspension of nanoparticles and a plasmonic substrate containing a network of metallic nanoparticles. The bubble captures and freezes the nanoparticles on the substrate, and different patterns can be created depending on the movement of the stage. By using a smartphone, free-form macroscale movements can be created and replicated at the nanoscale.

The advantages of the technique are many. Specialized inks are not required, and issues such as nozzle clogging, ink spreading, and excessive post processing time don’t exist. The technique also opens doors to many applications, as well.

“We have demonstrated anti-counterfeiting application via fabrication of micro-scale QR code (80 µm×80 µm),” the researchers state. “The generality and simplicity of bubble printing along with its flexible substrate compatibility enables the fabrication of multiple functional devices such as ultra-high resolution displays, multi-sensor integration at nano/micro scale, and nanolasers. In addition, the haptic-integration can advance research and education in nanoscience and nanotechnology.”

Further work will research other nanoparticle systems for applications such as colloidal nanosensors, flexible LED microdisplay devices, and colloidal waveguides. Additional applications could include flexible electronics, flexible photonics and even biological applications. The key challenges to be overcome at the moment are improving the roughness of the lines and maintaining the bubble stability over centimeter-scale areas.

“The scientific core of our finding is the stable bubble-mediated immobilization at the submicron scale, and the ability to maintain the submicron-sized bubble’s stability over a large area,” the researchers explain. “Our work circumvents the barrier of achieving a widely applicable, high-throughput and user-friendly printing technique in the submicrometer regime, along with simultaneous fluorescence modification capability.”

Authors of the research paper include Bharath Bangalore Rajeeva, Linhan Lin, Evan P. Perillo, Xiaolei Peng, William W. Yu, Andrew K. Dunn, and Yuebing Zheng. Discuss in the Bubble Printing forum at 3DPB.com.

 

Share this Article


Recent News

3D Printing Webinar and Event Roundup: June 23, 2024

3D Printing News Briefs, June 22, 2024: Depowdering, Helicopter Cockpit, & More



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Bugatti Leverages Divergent to 3D Print Chassis and Suspension Parts for Tourbillon Hypercar

Divergent, the digitized contract manufacturer based in Los Angeles, has partnered with French luxury automaker Bugatti for the latter’s upcoming Tourbillon hypercar. Via the collaboration, Divergent will use the Divergent...

3D Systems Bets on Pellet-Extrusion as the Future of 3D Printing with EXT 800 Titan

US additive manufacturing (AM) industry pioneer 3D Systems has announced its latest product release, the EXT 800 Titan Pellet. The third member in the EXT Titan Pellet lineup, the 800...

Aibuild to Launch Version 2.0 3D Printing Software at RAPID + TCT 2024

Aibuild, the London-based software as a service (SaaS) company specializing in solutions for large format additive manufacturing (AM), will roll out Aibuild 2.0, the latest version of its cloud-based software...

3D Printing Webinar and Event Roundup: June 16, 2024

In this week’s roundup, we’ve got plenty of in-person 3D printing events, including PowderMet2024, Manufacturing World Tokyo, and a few Demo Days and tours. Stratasys continues its advanced training courses,...