Two trends that have really stood out recently in the 3D printing/additive manufacturing industry are large-scale 3D printers and hybrid 3D printers. Additive manufacturing combined with other forms of technology is something we’ve especially had our eye on lately, and manufacturers are clearly thinking along the same lines as more and more machines emerge that combine 3D printing with CNC mills, robotics, and other technologies. This has scarcely been more evident, however, as it is in the recently launched LASIMM project.
Begun in October of 2016, LASIMM is an acronym for Large Additive Subtractive Integrated Modular Machine, and is focused on the development of a large-scale manufacturing machine that combines multiple additive and subtractive technologies. The project is scheduled to run through September 2019, and once completed, the machine is expected to have capabilities for additive manufacturing, machining, cold work, metrology and inspection, all resulting in the production of large engineering-grade parts with cost benefits that exceed their conventionally manufactured counterparts by 50%.
Funded by the European Commission and coordinated by the European Federation for Welding, Joining and Cutting, the project has enlisted the participation of several institutions from multiple countries, including:
- BAE Systems
- Foster + Partners Ltd
- Vestas Wind Systems
- Cranfield University
- Global Robots Ltd
- Loxin 2002 SL
- Helmholtz-Zentrum Geesthact Centre for Materials and Coastal Research
- Autodesk
- Instituto Superior Técnico
Objectives include the development of not only the machine itself, which will be built with a modular, flexible structure, but the complex software that will be needed to operate it, as well as the multiple materials it will use for manufacturing. The software will need to be capable of generating tool paths for a parallel-process multi-headed system, and the system itself will ultimately be able to handle not only the fabrication of the parts but their in-process inspection and repair. In short, the LASIMM machine will be a factory unto itself.
“For large scale engineering structures material needs to be deposited at a relatively high rate with exceptional properties and excellent integrity,” the project brief states. “To ensure this the machine is based on wire + arc additive manufacture for the additive process. A unique feature of the machine will be the capability for parallel manufacturing featuring either multiple deposition heads or concurrent addition and subtraction processes. To facilitate parallel manufacturing the machine architecture is based on robotics. To ensure that the surface finish and accuracy needed for engineering components is obtained for the subtractive step a parallel kinematic motion robot is employed. This robot is also used for application of cold work by rolling between passes. This ensures that material properties can be better than those of forged material.”
Numerous benefits are expected to come from the project – more so than metal additive manufacturing, the LASIMM website states, in another affirmation towards hybrid manufacturing as the real future of fabrication, rather than additive manufacturing alone. A few of the specific benefits outlined are the production of finished, ready-for-use parts; improved material properties thanks to the first-ever inclusion of cold work into an additive manufacturing machine; the capability of producing mixed-material components; and reduced production costs and time for the following reasons:
- Elimination of the need to transfer the manufactured part between multiple machines
- Elimination of post-build NDT
- Parallel manufacturing
- Elimination of scrap, resulting in the reduction of waste and thus reduction of cost
- Scalability
With the expected reduction of time, cost and waste expected by the completion of the LASIMM, the three years expected for the project will almost certainly be worth the time and resources. The consortium composed of the 10 partner organizations listed above will work, both during the project and after it finishes, to review standards for hybrid manufacturing and develop new ones if necessary in collaboration with standardization bodies such as CEN and ISO. The consortium will also look at training requirements so that once LASIMM is complete, there will be a system in place for training the necessary personnel to work with the machine.
Additional benefits of LASIMM, as outlined by the consortium, include:
- 20% reduction in time and cost compared to current additive and subtractive manufacturing processes
- 15% increase in productivity for high-volume production
- More flexibility for machines in terms of adapting to a changing market, including a greater demand for customization
- Reduction of inventory thanks to on-demand manufacturing capabilities
- Reduction of work floor space
- The creation of localized manufacturing ecosystems and supply chains
- Contributions to standardization and certification for new hybrid manufacturing processes
At the risk of sounding clichéd, this project really does have the potential to change the face of the manufacturing industry – especially when it comes to construction and other large-scale projects. It’s a huge step towards the hybrid manufacutring-heavy future we’ve speculated about.You can learn more about LASIMM and the project’s participants here. Discuss in the LASIMM forum at 3DPB.com.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
3D Printing Market Reaches $3.45B in Q2 2024, Marking 8.4% Year-Over-Year Growth
The global 3D printing market continued its upward trajectory in the second quarter of 2024, totaling $3.45 billion—a year-over-year increase of 8.4%. Despite a slight sequential decline from $3.47 billion...
New ABB Cobots Are 10 Times More Accurate for 3D Printing and More
ABB has introduced Ultra Accuracy GoFa cobots, which are ten times more accurate than the company’s previous cobots. While older industrial robots have driven innovation in concrete 3D printing, wire...
AM Expands Beyond 3D Printing at IMTS 2024
As discussed in our previous article on the Western hemisphere’s largest manufacturing trade show, the International Manufacturing Technology Show (IMTS), the industrialization of 3D printing was on display. This was...
Ursa Major & US Navy Make $25M Joint Investment in New 3D Printed Rocket Motor Prototype
Ursa Major, the Colorado-based company dedicated to building a North American rocket propulsion supply chain with advanced manufacturing, has become one of the first recipients of funding from the DoD’s...