LASIMM Project is Poised to Usher in a New Era of Hybrid Additive Manufacturing

Share this Article

Two trends that have really stood out recently in the 3D printing/additive manufacturing industry are large-scale 3D printers and hybrid 3D printers. Additive manufacturing combined with other forms of technology is something we’ve especially had our eye on lately, and manufacturers are clearly thinking along the same lines as more and more machines emerge that combine 3D printing with CNC mills, robotics, and other technologies. This has scarcely been more evident, however, as it is in the recently launched LASIMM project.

Begun in October of 2016, LASIMM is an acronym for Large Additive Subtractive Integrated Modular Machine, and is focused on the development of a large-scale manufacturing machine that combines multiple additive and subtractive technologies. The project is scheduled to run through September 2019, and once completed, the machine is expected to have capabilities for additive manufacturing, machining, cold work, metrology and inspection, all resulting in the production of large engineering-grade parts with cost benefits that exceed their conventionally manufactured counterparts by 50%.

Funded by the European Commission and coordinated by the European Federation for Welding, Joining and Cutting, the project has enlisted the participation of several institutions from multiple countries, including:

Objectives include the development of not only the machine itself, which will be built with a modular, flexible structure, but the complex software that will be needed to operate it, as well as the multiple materials it will use for manufacturing. The software will need to be capable of generating tool paths for a parallel-process multi-headed system, and the system itself will ultimately be able to handle not only the fabrication of the parts but their in-process inspection and repair. In short, the LASIMM machine will be a factory unto itself.

“For large scale engineering structures material needs to be deposited at a relatively high rate with exceptional properties and excellent integrity,” the project brief states. “To ensure this the machine is based on wire + arc additive manufacture for the additive process. A unique feature of the machine will be the capability for parallel manufacturing featuring either multiple deposition heads or concurrent addition and subtraction processes. To facilitate parallel manufacturing the machine architecture is based on robotics. To ensure that the surface finish and accuracy needed for engineering components is obtained for the subtractive step a parallel kinematic motion robot is employed. This robot is also used for application of cold work by rolling between passes. This ensures that material properties can be better than those of forged material.”

Numerous benefits are expected to come from the project – more so than metal additive manufacturing, the LASIMM website states, in another affirmation towards hybrid manufacturing as the real future of fabrication, rather than additive manufacturing alone. A few of the specific benefits outlined are the production of finished, ready-for-use parts; improved material properties thanks to the first-ever inclusion of cold work into an additive manufacturing machine; the capability of producing mixed-material components; and reduced production costs and time for the following reasons:

  • Elimination of the need to transfer the manufactured part between multiple machines
  • Elimination of post-build NDT
  • Parallel manufacturing
  • Elimination of scrap, resulting in the reduction of waste and thus reduction of cost
  • Scalability

With the expected reduction of time, cost and waste expected by the completion of the LASIMM, the three years expected for the project will almost certainly be worth the time and resources. The consortium composed of the 10 partner organizations listed above will work, both during the project and after it finishes, to review standards for hybrid manufacturing and develop new ones if necessary in collaboration with standardization bodies such as CEN and ISO. The consortium will also look at training requirements so that once LASIMM is complete, there will be a system in place for training the necessary personnel to work with the machine.

Additional benefits of LASIMM, as outlined by the consortium, include:

  • 20% reduction in time and cost compared to current additive and subtractive manufacturing processes
  • 15% increase in productivity for high-volume production
  • More flexibility for machines in terms of adapting to a changing market, including a greater demand for customization
  • Reduction of inventory thanks to on-demand manufacturing capabilities
  • Reduction of work floor space
  • The creation of localized manufacturing ecosystems and supply chains
  • Contributions to standardization and certification for new hybrid manufacturing processes

At the risk of sounding clichéd, this project really does have the potential to change the face of the manufacturing industry – especially when it comes to construction and other large-scale projects. It’s a huge step towards the hybrid manufacutring-heavy future we’ve speculated about.You can learn more about LASIMM and the project’s participants here. Discuss in the LASIMM forum at 3DPB.com.

 

Facebook Comments

Share this Article


Related Articles

3D Printing & the Circular Economy Part 2: Classical Manufacturing

Finland: Aalto University Researchers Experiment with Paste Extrusion & UV Curing of 3D Printed Biocomposites



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Sponsored

How 3D Printing Challenges Traditional Manufacturing

3D printing has had a major impact on the world of manufacturing. This article looks at how weakness in traditional manufacturing have given additive manufacturing an opportunity to expand. How...

The Perfect Match? Using 3D Printing and LEGO for Better Prototyping

While 3D printing has become a force in on-demand product manufacturing and a catalyst for creating many different functional objects, the technology was created to allow engineers to create rapid...

Portugal: Consortium Led By Adira Aims to do SLM 3D Printing With One Cubic Meter Build Volumes

Industrial manufacturers continue the push to integrate SLM processes into large scale projects, especially in 3D printing and additive manufacturing with metal; in fact, they are so serious about this...

3D Printing News Briefs: May 3, 2019

We’re talking with you about all things new in today’s 3D Printing News Briefs – a new partnership, a new material, and a new design challenge. DWS has announced that...


Training


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!