AMS 2025

Digital Fabrication in Architecture and 3D Printing Materials in Focus at AAAS Annual Meeting

AM Research Military

Share this Article

aaas-logoThe use of 3D printing in the construction field is not a new thing – there are 3D printed office buildings and laboratories, a 9-foot-tall 3D printed pavilion, 3D printed houses, and for the Game of Thrones fans who wish they could really live in Westeros, there’s even a 3D printed life-sized version of the Stark family’s Winterfell. Earlier this month, several European institutions gathered in Copenhagen to discuss how 3D printing is changing the construction industry, and during the recent American Association for the Advancement of Science (AAAS) 2017 Annual Meeting in Boston, researchers revealed some of the latest developments in digital fabrication in architecture at 1:1 building scale, including 3D printing. The process of digital fabrication joins production and design together, using 3D modeling or CAD software, and both additive and subtractive manufacturing processes.

Mesh Mould prototype produced by In Situ Fabricator construction robot is being filled with concrete. [Image: NCCR Digital Fabrication and ETH Zurich]

Mesh Mould prototype produced by In Situ Fabricator construction robot being filled with concrete. [Image: NCCR Digital Fabrication and ETH Zurich]

Many construction workers are still dealing with building processes today that involve sub-standard working conditions, and are not truly sustainable. But, there is a light at the end of the well-built tunnel – current research on integrating digital fabrication technologies within construction processes is enabling totally new forms of architecture, and is promising major contributions to both productivity and sustainability. Until now, disciplines like robotics, structural design, architecture, and materials and computer science were separated, but in order to truly test the potential of digital fabrication in real-life circumstances, an institutional and funding environment of solid, interdisciplinary research is necessary.

logo-ucberkeleyOne of the people who spoke at the AAAS Annual Meeting, about how digital fabrication technologies can be integrated in planning, design, and building processes to disrupt the building industry, was CEO of Emerging Objects and UC Berkeley Associate Professor for Architecture Ronald Rael. Rael previously co-developed a patented fiber-reinforced cement polymer, which was used in the exterior construction of the 3D Printed House 1.0 project back in 2014. The interior was created using a salt polymer, which Emerging Objects calls Saltygoo. Rael’s Emerging Objects team also developed a formula that allowed them to use recycled rubber content in 3D printing using tires.

digitalfabri

In situ Fabricator fabricating a doubly curved mesh structure during a fabrication test on the Empa NEST building in Duebendorf, Switzerland. [Image: NCCR Digital Fabrication and ETH Zurich]

Most 3D printing materials were originally developed to use in 3D printing relatively small objects, and not large-scale ones. But interdisciplinary research can help develop new architectural additive manufacturing methods. Rael explained at the AAAS Annual Meeting that he is working on developing new materials, which will be able to get around the costs, and scale, of 3D printing on a 1:1 construction scale. Judging by the research expertise and interests listed on his faculty page at UC Berkely, including digital modeling and furry buildings, I’d say he is more than qualified to do so. Rael demonstrated at the meeting that 3D printing architecture solutions “involve a material supply from sustainable resources, culled from waste streams or consideration of the efficiency of a building product’s digital materiality.”

RMIT_POS_2COLJane Burry, the Director of the Spatial Information Architecture Laboratory at RMIT University in Australia, spoke about the new mathematics of making, and how digital computation has been able to free designers from static 2D and 3D representational drawing and physical modeling techniques. Mathematical design models have enough information to allow CNC fabrication in both machines and techniques, and Burry talked about case studies, like the design and construction of Antoni Gaudí’s Sagrada Família, to illustrate how opportunities for optimization, variation, automation, quality control, and mass customization can be realized in the environment of full-scale building construction.

The Assistant Professor for Agile and Dexterous Robots at ETH Zurich, Jonas Buchli, discussed on-site digital fabrication at the meeting. Buchli is the principal investigator in the Swiss National Centre of Competence in Research (NCCR) Digital Fabrication, the country’s development and integration initiative for digital technologies in architecture. He proposed that we focus on how domain-specific robotic technology allows digital fabrication to be used right on construction sites, and offered some insight into the current research and development of the autonomous, mobile construction robot In Situ Fabricator. The In Situ Fabricator will soon be used for the first time on an actual building site.

Check out the video to see the In Situ Fabricator in action:

Discuss in the Architecture forum at 3DPB.com.

[Source/Images: Phys.org]

 

Share this Article


Recent News

Airtech to Supply Materials for KraussMaffei Large Format 3D Printers

Nanoscribe Finds a New Home with LAB14 After Being Sold by BICO



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Bioprinting Strategies: The Robin Hoods of Wake Forest

Rue to those aspiring to be modern-day Robin Hoods of Wake Forest: the path to riches in bioprinting is fraught with challenges. It’s perplexing that the media has not fully...

Meet Xell, xolo’s Budget-Friendly Bioprinter for Labs

Building on its expertise in volumetric bioprinting, xolo has unveiled Xell. This compact bioprinter brings rapid fabrication of complex structures without visible layers to research labs at an unprecedented price....

Axolotl Biosciences Brings Biotech to the Forefront at Formnext 2024

Formnext 2024 is known as the world’s leading trade fair for industrial 3D printing, with towering machines and manufacturing giants filling its halls. Amid this industrial frenzy, Axolotl Biosciences, a...

3D Printing Webinar and Event Roundup: November 24, 2024

It’s a slow week for webinars and events in the 3D printing industry, whether because everyone is still tired from last week’s Formnext or it’s almost Thanksgiving here in the...