New App and 3D Printed Models Provide Tools for Study of Human Embryo

Formnext

Share this Article

One of the difficulties facing medical education is that the human body exists in three dimensions and requires study in three dimensions. This means that in order to appropriately understand human anatomy, pathologies, and development there is no substitute for hands-on experience with the human body. While that is still true there are at least new opportunities being presented through 3-D modeling and printing that can provide some of the experience previously only possible in working with cadavers.

20140714081640-ipadtouchFaculty and students at Case Western Reserve University interested in the ways in which these new technologies can support embryological education have worked to develop an app called Embryon in conjunction with students and recent graduates from the Cleveland Institute of Art. So far, the team has developed a series of 3-D models which provide students with instruction on embryological nervous systems, eyes, ears, and full body development.

To take this app to the next level, the team has turned to Indiegogo in an effort to raise $40,000 by September 20. This funding will be used to complete the cardiovascular simulation that they wish to include as a central component of the educational material. While there are certainly textbooks and illustrations already available, as well as plastic models demonstrating different aspects of embryological development, the team believes that the creation of this digital material is particularly important.

“Today’s students are digital natives and are comfortable using online and digital assets in their study… Previous work has shown that the presentation of embryological structures as 3-D models rather than using 2-D illustrations enhances a student’s understanding of the morphogenesis of complex tissues and organs. A student can grasp the complexities of facial development or heart development much more quickly and with deeper understanding through the use of the 3-D model rather than 2-D illustrations.”

20140714073925-screenshot_layout_labelsAs such, an additional portion of the team’s efforts is being directed toward the creation of physical manipulatives to accompany the digital material. Currently, they are focused on 3-D printed heart models. These two learning modalities will be combined with students first being introduced to the material in digital form, and then being allowed to further explore the physical 3-D printed model. The team explained their vision for the relationship between digital application and physical modeling:

“For example, in the heart embryonic simulation, the student learns how the primitive part two subdivides into the four chambers of the fetal and adult heart. The student is also presented with material to understand the congenital heart anomalies that result from the failure to complete formation of these chambers. Once a student has completed the digital material and assessment in our application, they will be presented with the same heart model from the application, but as a physical 3-D printed model, that depicts either normal development formation of a congenital anomaly.”

With congenital anomalies, commonly referred to as first effects, affecting approximately one in every 33 infants and resulting in hundreds of thousands of newborn deaths every year, it is vital that medical and dental students have as many opportunities as possible to fully understand the anomalies, their implications, and possible interventions. The creation of this app and the accompanying physical models will provide students with much greater access to the resources that they need as they prepare for practice.

3D printing as a means for medical instruction is becoming more and more common these days.  Let us know your thoughts on this creative use of 3D printing in the 3D Printed human embryo forum thread on 3DPB.com.  Check out the video below for further details on this Indiegogo campaign.


20140714092050-anterior_posterior



Share this Article


Recent News

3D Printed Aorta Model Helps Surgeons Remove “Ticking Time Bomb” Artery

Novenda Secures $6.1 Million in Series A Funding for Dental 3D Printing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

The Market and Industry Potential of Multi-Material 3D and 4D Printing in Additive Electronics

Additive manufacturing leverages computer-based software to create components for products by depositing either dielectric or conductive materials, layer by layer, into different geometric shapes. Since its birth in the 1980s,...

3DPOD 262: Bio-inspired Design for AM with Dhruv Bhate, Arizona State University

Dhruv Bhate is an associate professor at Arizona State University. There, he looks at structures, materials, and design. Previously, he worked at PADT as well as in the semiconductor and...

3DPOD 261: Tooling and Cooling for AM with Jason Murphy, NXC MFG

Jason Murphy´s NXC MFG (Next Chapter Manufacturing) is not a generalist service; instead, the company specializes in making tooling. Using LPBF and binder jet, the company produces some of the...

3DPOD 260: John Hart on VulcanForms, MIT, Desktop Metal and More

John Hart is a Professor at MIT; he´s also the director of the Laboratory for Manufacturing and Productivity as well as the director of the Center for Advanced Production Technologies....