Make Your Own Arduino-Enhanced, 3D Printed Paddle Ball Game

IMTS

Share this Article

paddleballHave you ever known anyone who was actually good at paddle ball? You know–the wooden paddle with a rubber ball attached to it by a string? It’s a toy that no child I’ve ever known (myself included) has mastered but grandfathers the world over prove themselves paddleball champs. Maybe it just takes years to acquire the necessary skill or possibly we’ve all just needed a little extra help. Who would have thought that little, added finesse would be provided by 3D printing and Arduino?

Apparently, maker and 3D printing expert Mike Rigsby wasn’t much good at paddle ball either. He also seems not to have been willing to accept defeat, so he designed a 3D printed, Arduino-enhanced paddle ball rig that actually doesn’t make you want to fling the toy, throw up your hands, and vow never to attempt such folly again.

Rigsby, who is a frequent contributor to Instructables and goes by “MikeTheMaker” on the site, provided instructions, .stl files, and, most importantly, positive reinforcement for all of you would-be paddle ball champions (I’ve long since given up hope).

This project requires a servo motor, an Arduino Uno, four AA batteries, some hardware, a bit of glue, a soldering iron, a few 3D printed parts, and, of course, a paddle ball set-up. You begin by printing the base of the enhanced paddleball game. The base slides onto the end of a table, so it’s held in place when the fun begins. You’ll print the two other 3D printed parts, a rod and the bracket for the servo motor.

paddleball clampsAssembling the various parts is pretty easy. First mount the motor to the bracket and then mount them to the base. Rigsby, who has published a book, A Beginners Guide to 3D Printing: 14 Simple Toy Designs to Get You Started, shared a helpful technique for joining 3D printed parts: He “welded” the PLA pieces using a low-wattage soldering iron, which basically melts them together. Be sure you’re working in a well-ventilated room if you do this.

Next, Rigsby affixed the rod to the servo motor horn using magnet wire, although he suggests that fishing line would be just as effective. Glue the paddle to the rod assembly using super glue (he used the gel form).

Rigsby has also written an app, “How to Make a Science Fair Project,” and has written a number of articles on electronics, DIY, and 3D printing, so it’s clear he has plenty of experience using electronics, including Arduino. He used pin 7 of his Arduino Uno as the control pin for the servo motor and installed the sketch “servo.ino” to make it run. The servo itself is powered by the four AA batteries, with the negative from the batteries tied to the negative on the Arudino. He powered the Arduino with a 9 volt battery.

And that’s basically it, aside from sliding the device onto a glass table and turning it on. As far as the whole skill issue is concerned, Rigsby remarked, “If you don’t expect to hit the ball, you won’t be disappointed.” That’s encouraging advice. In its own way.

What do you think about this kind of Arduino-based project? Would it make you feel better about your skills with paddle ball? Let us know in the 3D Printing, Arduino, and Paddle Ball forum thread over at 3DPB.com. Check out a video of the results below.

paddleball main

Share this Article


Recent News

Will Photonic-Crystal Lasers Revolutionize 3D Printing?

One of US’s Largest Machine Tool Resellers to Offer Stratasys 3D Printing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

UltiMaker Takes on Industrial Market with Factor 4 3D Printer

UltiMaker has announced its newest industrial 3D printer: The Factor 4. Unveiled officially at the HANNOVER MESSE trade show today, the Factor 4 is being positioned as a new flagship...

3D Printing Webinar and Event Roundup: April 21, 2024

It’s another busy week of webinars and events, starting with Hannover Messe in Germany and continuing with Metalcasting Congress, Chinaplas, TechBlick’s Innovation Festival, and more. Stratasys continues its advanced training...

Nylon 3D Printed Parts Made More Functional with Coatings & Colors

Parts 3D printed from polyamide (PA, Nylon) 12 using powder bed fusion (PBF) are a mainstay in the additive manufacturing (AM) industry. While post-finishing processes have improved the porosity of...

3D Printing Webinar and Event Roundup: April 14, 2024

We’re starting off the week’s 3D printing webinars and events at ASTM AMCOE’s 11th Snapshot Workshop and MACH Exhibition. Stratasys continues its advanced training courses, SME is holding a virtual...