Digital Metal Releases Two New Superalloys for Metal 3D Printing in Extreme Environments

Share this Article

A few years ago, metal powder producer the Höganäs Group acquired Digital Metal, a small Sweden-based company with a proprietary binder jetting technology of the same name that was developed in 2013. The company produced more than 200,000 metal parts before its DM P2500 metal 3D printer was even made commercially available two years ago.

Along with its part production count, Digital Metal has continued to grow, introducing a fully automated production concept last fall, and just this week launched two new superalloy-grade materials meant for use in extreme applications.

“We have been receiving qualified requests for these materials from various large companies. Many producers within the aerospace and automotive business have long been anticipating high-quality superalloys that are suitable for 3D printing,” said Ralf Carlström, the General Manager at Digital Metal. “Now we can offer them the perfect combination – our unique binder jetting technology and superalloys that are specially developed for our printers.”

The company was the first to commercialize high-precision 3D metal printers for serial production of small, high-volume components. Digital Metal’s high precision binder jetting technology makes it possible to 3D print complex, detailed, high quality objects with a superior surface finish.

The types of companies that require complex parts with excellent surface finish are from the same industries – aerospace, automotive,chemical, and industrial – that are seeing an increasing demand for 3D printable superalloys. To meet this demand, Digital Metal has introduced two of its own superalloy grades that can be used in these types of extreme environments: DM 625 and DM 247.

Material data – Typical values

Superalloys are metal materials that, even when subjected to high temperatures and stress, still show excellent corrosion resistance and strength, which makes them well-suited for more challenging applications. Unfortunately, using non-weldable materials, like MAR M247, in 3D printing is not easy, due to inherent thermal gradients and high solidification rates.

But Digital Metal materials are different. Its binder jetting technology has some unique properties that make it possible to 3D print superalloys – even grades that are not weldable – with near full density. The method works by printing in an ambient temperature without applying heat, and is then followed with a sintering step. Densification occurs without melting during the sintering process, and during cooling it happens with only a minimal amount of thermal gradients.

Both the DM 625 and the DM 247 superalloys have been subjected to plenty of in-house testing by Digital Metal, in order to make sure that they meet, and even exceed, customer expectations. DM 247 is based on MAR M247, which is non-weldable and often used in applications that deal with elevated temperatures, such as material for turbine blades. DM 625 is an Inconel 625-grade, which applications from aerospace and chemical processing equpiment to the nuclear and seawater industries.

Digital Metal’s new DM 625 and the DM 247 superalloys now join the company’s existing range of materials, which also includes titanium Ti6Al4V and stainless steel 17-4PH and 316L.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

[Source/Images: Digital Metal]

Share this Article


Recent News

Swiss Researchers Inspired by Butterfly Wing Structure in 3D Printing Ultra-Lightweight Structures

3D Printing Metamaterials, Part One



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Customized FDM 4D Printing for Metastructures with Variable Bandgap Regions

International researchers are moving to the next level in digital fabrication, publishing their findings in ‘Shape-Adaptive Metastructures with Variable Bandgap Regions by 4D Printing.’ Focusing on how 4D metastructures can...

nTopology and ORNL Partner to Optimize BAAM 3D Printing

The U.S. Department of Energy’s Oak Ridge National Laboratory (ORNL) is the epicenter of a great deal of exciting research currently taking place in the 3D printing industry, much of...

TU Delft: 3D Printing Soft Mechanical Materials for Ultra-Programmable Robotics

TU Delft scientists continue to delve into 3D printing research, recently developing advanced robotics in the form of highly programmable—and soft—actuators. Fabricated with both hard and soft materials, the actuators...

China: Origami Used to Strengthen 4D Metamaterials Resulting in a Tunable Miura-ori Tube

Chinese researchers explore not only the inspiration of origami designs and structures in science and technology today, but also the uses of 4D printing in a range of industrial applications....


Shop

View our broad assortment of in house and third party products.


Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!