Researchers Mix Titanium and Tantalum Alloys to Improve Stress Absorption of 3D Printed Implants

Share this Article

Alloys made of either titanium or tantalum hold a massive amount of value within the medical industry, particularly when it comes to 3D printing patient-specific implants. Over the past couple of years we’ve seen titanium alloys geared towards cranial and orthopedic implants, while tantalum has shown a lot of promise for hip replacements and spinal implants. Now, a collaborative team of researchers from A*STAR’s Singapore Institute of Manufacturing Technology (SIMTech) and the Singapore Centre for 3D Printing (SC3DP) at Nanyang Technological University have discovered a viable process to mix the powders into one 3D printable material, which could potentially help 3D print customized, patient-specific implants with enhanced properties and improved stress absorption.

astarIn order to research these implants, the group utilized selective laser melting (SLM), an emerging 3D printing technology that uses 3D CAD data and high-powered lasers to fuse powdered metal alloys layer-by-layer. The collaborative effort was initiated by SIMTech’s Florencia Edith Wiria and SC3DP’s Wai Yee Yeong, and through their work, they’ve already proved the ability to create biomedical prototypes out of titanium-aluminum-based powders. The issue with aluminum, however, is the potential negative long-term effects that the material could have on human neurology, leading the researchers to turn to an equal mixture of titanium and tantalum alloys.

biocompatiblAlthough the combination of these alloys is perfect for implants, particularly due to their biocompatibility and mechanical superiority to standalone titanium, there were still a few kinks to work out with the unique tantalum material. Tantalum, a rare, blue-gray metal, has an extremely high melting point of over 3,000 degrees Celsius, making it difficult and costly to turn the tantalum into finely dispersed microspheres engineered for SLM printing. But by mixing the rough, elongated tantalum powder with a titanium microsphere powder, the researchers were able to use the SLM printing process and retain the spherical shape of the titanium alloy, which was vital to the success of the mixture.

“The titanium powder acts as a rolling medium,” Wiria explained. “It pushes the tantalum powder along and makes the processing by SLM possible.”

sc3dpbannerIn order to 3D print these titanium-tantalum prototypes, the researchers needed to reduce the thermal stress of the material, which they succeeded in by applying ‘checkerboard’ laser scanning that melted down the metal materials in alternate up-and-down or side-to-side movements. Not only were the researchers able to show that mixed material was viable and printable, but X-ray and imaging technology actually showed that the addition of the tantalum material and rapid solidification both promoted and stabilized the formation of titanium grains.

“These alloys are specifically designed for orthopedic applications, and even have the potential to show a type of ‘shape-memory’ after being deformed,” Yeong said. “This opens up the possibilities of printing personalized devices to improve patient care.”

Overall, the research team hypothesizes that the titanium-tantalum could potentially lessen the ’stress shielding’ that often occurs when implants are too elastic, which causes them to transfer insufficient loads to neighboring bones. The research, which is entitled “Selective laser melting of titanium alloy with 50 wt% tantalum: Microstructure and mechanical properties”, was written by Wiria, Yeong, and research collaborator Swee Leong Sing, and was published in the Journal of Alloys and Compounds on March 5, 2016. Discuss the potential for this new material in the 3D Printing with New Titanium Material forum over at 3DPB.com.

[Source: Phys.org]

Share this Article


Recent News

COVID-19 Pandemic: 3D Printing Events Postponed, Cancelled, Moved Online

3DP AIPerfecter Offers Part Analysis to 3D Printing Service Bureaus



Categories

3D Design

3D Printed Art

3D printed automobiles

3D Printed Food


You May Also Like

What’s the Deal with BASF Partnering with Shapeways on 3D Printing Materials?

In the fall of 2019, BASF 3D Printing Solutions, a 3D printing material and services supplier and subsidiary of BASF New Business GmbH, introduced Forward AM, a new corporate brand presence....

Sculpteo Now Officially Part of BASF, an Interview with Clément Moreau

With a market cap of $52B, German chemical giant BASF is near the top of the food chain within the 3D printing industry. It sits just below GE, with its...

Featured

Where’s the 3D Printed Beef? New Tech 3D Prints 50 Vegan Steaks per Hour

Over the last decade, we have witnessed a series of positive trends in the food industry. From the invention of the first-ever 3D-printed, plant-based burgers to discovering how to personalize...

Greater Potential for Artificial Intelligence in Additive Manufacturing

Researchers from China continue in the quest to continually top 3D printing capabilities, adding complex layers with other technologies into the fold, as detailed in the recently published ‘Smart additive...


Shop

View our broad assortment of in house and third party products.