Researchers Inspired by Pastry Chefs: 3D Printed Constructs Lead to More Successful Tissue Engineering
Looking at the latest project from research at Rice University and the University of Pennsylvania rather broadly, we’d have to say that it’s pretty amazing what you can do with hardware such as a 3D printer and some simple ingredients like sugar and silicone. Just these few resources have been the catalyst for answering a very complex question: How can you deliver oxygen and nutrients to all cells in an artificial organ or tissue implant that takes days or weeks to grow in the lab prior to surgery?
It just takes a team of bioengineers and surgeons to put their heads together and figure this stuff out–with that ‘stuff’ being made of cellular material that can be actually be used to grow structures for replacement tissues and organs for transplantation.
With a John S. Dunn Collaborative Research Award supporting the research, led by Jordan Miller, assistant professor of bioengineering at Rice, and Pavan Atluri, assistant professor of surgery at University of Pennsylvania, this team has so far been able to 3D print an implant with an intricate network of blood vessels.
The researchers have recently released their findings in a study called ‘In vivo anastomosis and perfusion of a 3D printed construct containing microchannel networks,’ published in the journal Tissue Engineering Part C: Methods, and authored by Dr. Renganaden Sooppan, Miss Samantha J. Paulsen, Mr. Jason Han, Mr. Anderson H. Ta, Mr. Patrick V Dinh, Dr. Ann C. Gaffey, Miss Chantel Venkataraman, Mr. Alen Trubelja, Mr. George Hung, Dr. Jordan Miller, and Dr. Pavan Atluri.
Here, they outline how tissue engineering has advanced to such a point, as well as what they now bring to the table in terms of being able to ‘mimic’ vascularized tissue and actually make direct connections between ‘engineered microvascular networks and ‘host vasculature.’
“We have previously demonstrated that the rapid casting of 3D printed sacrificial carbohydrate glass is an expeditious and reliable method of creating scaffolds with 3D microvessel networks,” states the team. “Here, we describe a new surgical technique to directly connect host femoral arteries to patterned microvessel networks.”

Red dye shows the tiny vessels in the silicone construct created in the Miller lab using a 3D printer. [Photo: Jeff Fitlow]
Previously, those involved in the engineering of tissue would have implanted engineered tissue scaffolds inside the body and waited for them to come alive thanks to adjacent, healthy blood vessels. That process though involves waiting, waiting, and more waiting….and then often, after weeks, the cells die from lack of oxygen anyway.
“We had a theory that maybe we shouldn’t be waiting,” Miller said. “We wondered if there were a way to implant a 3D printed construct where we could connect host arteries directly to the construct and get perfusion immediately. In this study, we are taking the first step toward applying an analogy from transplant surgery to 3-D printed constructs we make in the lab.”

From left, Jordan Miller, Samantha Paulsen and Anderson Ta stand before the 3D printer used to create the silicone constructs. [Photo: Jeff Fitlow]
With this idea, they used the 3D printer to begin fabricating layers of sugar glass, one after the other. This began the lattice network for blood vessels, with the hardened sugar being molded and poured into silicon gel which would then begin to cure. Afterward, when the sugar was dissolved, it left behind a network of small channels in the silicone.
“They don’t yet look like the blood vessels found in organs, but they have some of the key features relevant for a transplant surgeon,” Miller said. “We created a construct that has one inlet and one outlet, which are about one millimeter in diameter, and these main vessels branch into multiple smaller vessels, which are about 600 to 800 microns.”
The hope is that these new research techniques will help overcome the previous challenges met when creating or implanting engineering tissue and then failing to keep it viable, or alive. According to Miller, this study breaks new ground in that they do believe they are much closer to developing a way for surgeons to connect arteries to the tissue that they construct in the lab, ultimately lending success to transplantation. Let us know your thoughts on this research in the 3D Tissue Engineering forum thread on 3DPB.com.
[Source: Rice University News & Media]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
3DPOD Episode 138: Point-of-Care Medical Device 3D Printing with Dr. Steven Kurtz, Drexel University
In this episode of the 3DPOD, we speak to Dr. Steven Kurtz, director of the Implant Research Center at Drexel University’s School of Biomedical Engineering, Science, and Health Systems and...
3DPOD Episode 137: From RepRap to Government Supplier, MatterHackers CEO Lars Brubaker
Coming from the world of gaming, Lars Brubaker started MatterHackers to take part in the 3D printing revolution. Due to his background, he has good war stories: trying to find...
3DPOD Episode 136: Exploring the Boundaries of 3D Printing with Fergal Coulter, ETH Zurich
Fergal Coulter, a postdoctoral research fellow at ETH Zurich, is one of the most interesting scientists working in 3D printing today. His work spans from 3D printing on balloon shapes...
3DPOD Episode 135: Performance 3D Printing Services with Bob Markley, ADDMAN Group
Bob Markley, Executive Vice President at additive manufacturing provider ADDMAN Group, has had an eventful journey in 3D printing. In this episode of the 3DPOD, he discusses the route to...
Print Services
Upload your 3D Models and get them printed quickly and efficiently.