Architect Matthias Kohler, who was not involved with the DCP but studies autonomous construction at ETH Zurich, said, “It’s an impressive project.”
The use of autonomous 3D printing in construction boosts efficiency and building strength, since it only puts material down where it’s needed, and it’s also safer, faster, and more precise than manual construction methods, in addition to making logistics and planning much easier. The Mediated Matter scientists who worked on the DCP published a paper about their work, titled “Toward site-specific and self-sufficient robotic fabrication on architectural scales,” in the Science Robotics journal; co-authors include MIT mechanical engineer and project lead Steven J. Keating, Mediated Matter Group’s Julian C. Leland and Levi Cai, and the group’s leader Neri Oxman, whose work we’ve long admired.
The paper’s abstract reads, “Contemporary construction techniques are slow, labor-intensive, dangerous, expensive, and constrained to primarily rectilinear forms, often resulting in homogenous structures built using materials sourced from centralized factories. To begin to address these issues, we present the Digital Construction Platform (DCP), an automated construction system capable of customized on-site fabrication of architectural-scale structures using real-time environmental data for process control. The system consists of a compound arm system composed of hydraulic and electric robotic arms carried on a tracked mobile platform. An additive manufacturing technique for constructing insulated formwork with gradient properties from dynamic mixing was developed and implemented with the DCP. As a case study, a 14.6-m-diameter, 3.7-m-tall open dome formwork structure was successfully additively manufactured on site with a fabrication time under 13.5 hours. The DCP system was characterized and evaluated in comparison with traditional construction techniques and existing large-scale digital construction research projects. Benefits in safety, quality, customization, speed, cost, and functionality were identified and reported upon. Early exploratory steps toward self-sufficiency—including photovoltaic charging and the sourcing and use of local materials—are discussed along with proposed future applications for autonomous construction.”
The team put lasers on the end of the arm that could sense the position of the electronic tip, and instead of keeping the entire arm stable, the lasers were able to counteract any unwanted movement in the rest of the arm. This has never before been used in a construction robot, and it allowed the DCP to not only have a huge range of motion and reach, but remain lightweight as well.
Keating said, “Instead of making a square building, you can make a Dr. Seuss–looking building for the same cost.”
For now, the DCP still needs a little assistance: dew settled on the dome at one point during the printing process, and caused a layer of foam to slide off before it had completely adhered to the structure; Keating was able to fix the problem by switching out the printing tip for a chainsaw and backtrack. But as the print-in-place method uses standard materials, it can be used with traditional construction techniques, which will help with eventual code certification.
What do you think of this project? Discuss in the Mediated Matter forum at 3DPB.com.
[Source: Science Magazine / Images: Mediated Matter Group]