Researchers at NIIST have developed a new kind of wearable antenna 3D printed from a conductive silver ink. It’s flexible and lightweight, and, because it’s silver and not copper, will not oxidize. The bottom electrode on the polyester fabric the antenna was embedded into was 3D printed, as was the E-shaped patch antenna itself. The antenna could be used for a variety of applications, including defense, telemedicine and environmental monitoring.
“Our goal is to make wearable antenna which can be embedded in the jacket worn by soldiers in remote locations,” said Dr. P. Mohanan of Cochin University of Science and Technology, who also worked on the study. “We can connect the antenna to different sensors such as temperature, pressure and ECG sensors and the data can be transmitted to a remote server. The antenna can sense and communicate data in a non-intrusive manner. This way we can monitor the health of soldiers.”
The antenna is about 3 cm long and 4 cm wide, and made to operate at about 3.37 GHertz. It’s coated with a PVC polymer to make it water-resistant, and can be woven into textiles for WiMAX (Worldwide Interoperability for Microwave Access) applications. To maximize flexibility and keep the ink from permeating the material during screen printing, the researchers hot pressed three layers of the textile with polyacrylate sheets between the layers. The polyacrylate sheets then acted as an adhesive.
On a smaller scale, 3D printing an antenna like the one created by NIIST means that it can be made more flexible and better capable of functioning in the field. In a military context, you really don’t want your communications devices malfunctioning, and every small advancement that can keep things like embedded antennae performing better is, in fact, a huge advancement.
Discuss this and other 3D printing topics at 3DPrintBoard.com, or share your thoughts below.
[Source: Tevo News]