When researching small-batch fermentation, the conditions of volume production are typically reproduced by using water-filled airlocks integrated with testing flasks. The airlocks keep oxygen away from the yeast while allowing carbon dioxide to escape during fermentation, simulating the kinetics of a large tank. Two researchers at the University of Adelaide, Professor Vladimir Jiranek and Dr. Tommaso Watson, decided to try automating their wine research by integrating robotic sampling into the process. This would involve redesigning the water-filled airlocks.
First, they tried creating a new airlock from multiple stainless steel parts, put together with silver soldering. The design was a good, compact one, with strong construction and the ability to be sterilized by autoclave at 121ºC, but it had several disadvantages. The heavy stainless steel had the potential to damage the glass flasks, and it also didn’t allow visibility of water levels inside. The acidic environment produced during the fermentation process put the silver soldering at risk for corrosion, too. Moreover, this method was expensive and difficult, as it required multiple parts.
The team didn’t want to give up on 3D printing altogether, though, so they turned to Carbon’s Digital Light Synthesis (DLS) technology. The Technology House was one of the initial partners selected to begin using Carbon’s technology in its early days, so they were well familiar with Carbon’s M1 and M2 3D printers and suggested DLS for the third prototype. Using Carbon’s Cyanate Ester resin, the team 3D printed a third version of the airlock, and found that it combined the advantages of the previous two iterations, as well as eliminating the disadvantages.

The Cyanate Ester resin delivered a final part with a much better finish than the FDM part, and it was easily designed and 3D printed in a single piece. As the resin is designed for engineering-level applications, it could be sterilized via autoclave at 121°C without any damage, and the part was watertight and airtight. From design to production, the airlock took less than one week to create, a reduction in production time of over 67%. Costs were also reduced by 60%.
The compact airlock also allowed for a much smaller flask design, which worked out even better than the researchers had initially hoped: instead of the projected 96, they were able to fit 384 flasks on a platform for easy, quick robotic sampling. The University of Adelaide and The Technology House plan to continue to work together to produce and use thousands of the 3D printed airlocks over the next few years, allowing for automated, error-free wine testing – which should ultimately result in better wine. Discuss in the Wine Testing forum at 3DPB.com.
[Source/Images: Carbon]