How Patient Specific 3D Printed Organ Replicas Help Patients Reach Informed Decisions

Share this Article

More and more, the medical profession is becoming aware that there may be significant advantages available from the use of 3D printed replicas of patient specific anatomy organs. A recent Master’s Thesis completed by a Drexel University student provides further proof of the value of these important tools. The student, Jason Kirk, has released the findings within his thesis titled, 3D Printed Cardiac Imaging Data. Kirk’s presentation is provided in the form of a video that offers excellent background information regarding the value of the tool as well as how the study was completed. The remainder of the thesis centers on the results that he found. The basic question that he tackled was “is there value for surgeons and their patients in reviewing 3D printed anatomy replicas?”

3D Model of Human Heart Use for Printing

3D Model of Human Heart Use for Printing

He goes into detail as to how he determined if tools such as the above noted replicas can offer assistance. The primary method he used to document the results was via video communication. Kirk notes that in the past, surgeons used such things as X-rays, drawings, CT imaging and computer animation when communicating with their patients regarding anatomy issues. Today, however, most surgeons agreed that those methods limit the discussion to basic two dimensional representations, “which frequently confused complex spatial relationships.”

During the video Kirk provides insight into the process of preparing 3D anatomy replicas. Initially, the healthcare professional begins with patient specific CT scan data which serves as the basis for developing the 3D replica. He indicates that patient specific data is then used in conjunction with a software program called “Mimics.” By using the software program, he is able to prepare the model and isolate the area of interest, in this case the heart muscle.

The software allows the computer to save the graphic details of the model. It is then ready to complete using a polyjet 3D printer. This type of printer works by depositing layer after layer of liquid resin. This portion of the model is allowed to cure for 24 hours. The model is then removed from the printer and inspected for any errors. Once complete, a digital model can be used, as is, or with further editing to create a 3D stylized physical object. It is printed in two sections so it can provide a visual representation of the heart that allows for internal and external views without compromising either.

Additionally, Kirk obtained input from a panel of cardiac experts, including cardiovascular surgeons, radiologists, and researchers from the Mayo Clinic, Hahnemann University Hospital as well as Drexel University College of Medicine. The goal of the interviews was to determine if a 3D printed cardiac anatomy replica could be used to facilitate doctor-patient communications by providing a supplemental decision making aid.

3D Printed Heart Model

3D Printed Heart Model

His research indicated “Cardiac anatomy replicas can be used to facilitate Doctor/Patient communication and supplement contemporary visualization techniques by providing accurate three dimensional data which offers additional haptic and spatial feedback specific to the patient’s anatomy and pathology.”

Or stated another way, Kirk determined that in order to overcome the limitations of two dimensional presentations, one needs to combine patient centered healthcare, patient specific imaging data, and additive manufacturing techniques such as 3D printing; to assist empowered doctors to better communicate with their patients. Ultimately, this should lead to better, and more informed decisions.

Kirk’s thesis would appear to offer additional support for the idea that patients who have the ability to observe 3D anatomy replicas of affected organs gain a better understanding of the issues involved. Replicas that are based on patient specific data afford the best opportunity for meaningful dialog.

If you were to undergo a procedure, would you prefer to have a 3D printed model of your organs present while the surgeons explained the procedure to you?  Let us know your opinion in the 3D printed organ replica forum thread on 3DPB.com. Check out Kirk’s video below.

 

Share this Article


Recent News

Design Your Own 3D Model for Printing in CAD Software — All Online!

Portugal: Minho’s Love is One of the Largest 3D Printed Art Installations Ever



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Investigating 3D Printed Biomodels in Experimental Blood Flow Studies

There are many applications for 3D printing in the biomedical research community, such as lab-on-a-chip tools, surgical planning, and drug delivery. Yet another is 3D biomodels, which is the focus...

Portugal: Cork 3D Printing Composite Shows Promise for Enhancing Polyurethane Foams

In the paper “3D printed cork / polyurethane composite foams,” authors N. Gama, A. Ferreira, and A. Barros-Timmons delve further into the world of enhanced materials for better performance in...

Generative Design Methods Combine 3D Printing & Organic Evolution

“Go take your lessons from nature, that’s where our future lies.” – Leonardo da Vinci Virginia Commonwealth University student Mohammad Jawad takes a forward-looking approach to manufacturing, as 3D printing...

Portugal: Consortium Led By Adira Aims to do SLM 3D Printing With One Cubic Meter Build Volumes

Industrial manufacturers continue the push to integrate SLM processes into large scale projects, especially in 3D printing and additive manufacturing with metal; in fact, they are so serious about this...


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!