Norwegian Maker Learns 3D Modeling and Printing by Conducting a “Reverse 3D Printing Experiment”

Share this Article

When Carsten Arnholm decided to buy a 3D printer, he realized he was going to have to do some serious backtracking before he could use his new machine. So he went back — way back, to his childhood. wrenchHe got his hands on a metal wrench he’d gotten along with his very first bicycle. The wrench became a symbolic tool of sorts, one that helped Arnholm demystify 3D design and printing.

Arnholm, who lives in Norway and lists as interests astronomy, software, and “things like the Raspberry Pi,” has his own blog on which he related the story of his self-education in 3D design. While he awaited delivery of his new 3D printer, Arnholm decided to school himself not only in the software he’d be using to manage his printer, but also design programs — as much of it open source as possible.

In order to begin his 3D education, Arnholm decided he’d conduct what he referred to as a “reverse 3D-printing experiment.” That’s where the metal wrench came in.

“The starting point when using a 3D printer,” he explained, “is a virtual 3D computer model of the object you are printing.”

However, he already had the object he wanted to print — the wrench — so his plan was to take the real thing and make it virtual before making it real again. If this sounds a bit like a riddle, hold tight and I’ll explain.

scan

Arnholm’s first step was scanning the metal wrench, which he accomplished using a cheap flatbed scanner he already had in order to create an accurate profile of the object in 2D. He scanned the wrench and created a BMP file, which he then adjusted using Photoshop CS2, smoothing out the edges of the 2D wrench and arriving at a crisp, black silhouette.

scanned 2What comes next is not necessarily complicated, but it is painstaking, so you’re getting an overview here and can read Arnholm’s blog if you’re compelled by the nitty gritty details. He wanted to vectorize the basic, 2D structure of the wrench, so he devised a process that first required him to convert the BMP to DXF format.

Like any good plot, this one has twists and turns, however, and before Arnholm could get his wrench to DXF, he had to “take a detour via SVG format and Encapsulated Postscript (EPS) format” first, he explained.

On this detour, Arnholm used two different maps, if you will. He worked in Windows and Linux, converting to SVG from BMP in Linux Kubuntu using Inkscape to create an EPS file and pstoedit to get his vectorized DXF file, which provided him with what he referred to as “a trace of the wrench edges” — in other words, a series of vectors.

After vectorizing, Arnholm could begin the process of creating his 3D model of the wrench. He used OpenSCAD in keeping with his goal to use as much open source software as possible, which is surprisingly easy to do these days. He imported his DXF file to OpenSCAD and began the final steps in the process of creating his 3D model.“With this model,” wrote Arnholm, “we have everything required for creating a 3D-printed replica.”

last model

Reading his blog you get a sense of Arnholm’s genuine enthusiasm, as he leads you through his hands-on learning process. When he finally creates the STL file, you cannot help but wish you could be there when his 3D printer arrives, is installed, and the wrench is printed. I like to imagine a scene something like you’d see on Christmas morning.

Arnholm concluded his account of the “reverse 3D printing experiment” by pointing out the surprisingly varied options with regard to “incredibly powerful and free software tools available.” When used with diligence and creativity, he added, you can “arrive at some rather impressive results.” Arnholm’s blog and experiment are, additionally, a testament to the maker spirit and to the spirit of sharing that so thoroughly characterizes the culture of 3D printing.

Did you use a similar method to learn 3D printing, or a more formal process? Let us know your thoughts on learning 3D design and printing techniques in the Reverse 3D Printing Experiment forum thread over on 3DPB.com.

Share this Article


Recent News

4D Printing in Singapore: Researchers Pair Compliant Mechanisms with Chitosan Biopolymers

HP and NTU Singapore Officially Open Joint Corporate 3D Printing Lab



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing News Briefs: January 22, 2020

In today’s 3D Printing News Briefs, we’ve got a 2019 recap, a new 3D printing conference, a new 3D printer, and a 3D printed medicine story. Prusa is sharing how...

Victrex and University of Exeter Commission EOS P 810 to Commercialize PAEK Materials

Back in the summer of 2018, high-performance polymer solutions provider Victrex, based in the UK, announced that it had developed new PAEK 3D printing materials. PAEK, or polyaryletherketone, is a family...

Sponsored

3D Printing Is Ready for Manufacturing Primetime—Are We?

When the World Economic Forum reported that the value to society and industry of digital transformation across industries could exceed $100 trillion—yes, trillion—by 2025, we knew that wouldn’t happen without...

3D Printing News Briefs: December 15, 2019

In this edition of 3D Printing News Briefs, it’s business, business, and then an upcoming event. 3D Alliances signed a collaboration agreement with Xact Metal. Sigma Labs has appointed a...


Shop

View our broad assortment of in house and third party products.


Services & Data

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!