Inkbit

OpenQCM Project Uses 3D Printing to Create a Precision Quartz Crystal Microbalance

ST Dentistry

Share this Article

novaetechWhen Novaetech designed openQCM, they knew their vision for the device would require extreme precision when it was executed.

A Quartz Crystal Microbalance, openQCM is an incredibly sensitive — and fully open-source — scientific device for applications in chemical and biological sensing, and it’s driven by a quartz sensor capable of measuring mass deposition down to 1 billionth of gram.

Image 206Novaetech Srl is a spin-off of the National Institute for Astrophysics (INAF), and they are engaged in developing innovative sensors which boast high resolution and ultra high mass sensitivity. Their efforts are dedicated to the development of new generations of mass sensors based on quartz crystal microbalance and MEMS technologies, and they’ve already developed prototypes for dust aerosol detection and collaborated in a variety of international aerospace projects with NASA and the European Space Agency (ESA).

openqcm_expThose collaborations led to the development of “breadboards” used to detect dust and water in planetary environments like the MEDUSA instrument for future Mars exploration missions.

“The openQCM concept is inspired by the emerging movement of the open source hardware. It means that openQCM is a hardware whose design is made publicly available, in such a way that everyone can study, modify and distribute the hardware based on that design,” says Raffaele Battaglia of Novaetech.

One major challenge in developing open-source hardware is that such devices require funding to prototype and manufacture, and that’s why openQCM turned to 3D printing technology to keep costs low and quality high.

“Until now I have used 3D printing only for prototyping,” says Glenda Torres Guizado, a designer for the openQCM project. “This time it will be useful to test it as an end product and see if it is suitable in the scientific precision sector.”

Using Sculpteo to print out the prototypes via the SLS process from OS Formiga P100, P110, P395, and P730, the team created the device’s parts – parts which required a precision of from 100 µm down to 60 µm.

Quartz-Crystal-Microbalance-openQCM-Full-open-finalBattaglia, an astrophysicist and co-founder of Novaetech, has been involved in the development of mass sensors for planetary space missions and coordinated research projects in the biomedical and biological fields, and the Quartz Crystal Microbalance provided a perfect opportunity to use 3D printing technology.

Quartz Crystal Microbalance systems take advantage of an intrinsic property of the quartz crystal: piezoelectricity, and QCM systems are widely used in various fields of research and industry.

Battaglia says that in the past, gaining access to such systems was difficult and building one might have required the investment of from a few thousand dollars up to several hundred thousand dollars.

Can you think of any other open-source scientific devices which would be too expensive for wide adoption without 3D printing technology? If you’ve know of such a product or have worked on such a project, please let us know in the 3D Printed Quartz Crystal Microbalance forum thread on 3DPB.com.

Share this Article


Recent News

3D Systems Makes Bid to Buy Stratasys — 3D Printing’s Biggest Deal Yet to Come?

3DPOD Episode 153: 3D Printing Success with 3Doodler Inventor Max Bogue



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Printing Money Emergency Broadcast: Stratasys and Desktop Metal to Merge in All-stock Deal

In what is shaping up to be the biggest deal in the 3D printing industry of 2023, Stratasys and Desktop Metal will combine to form a $1.8 billion company. Alex...

Featured

Printing Money Episode 4: Current VC Deals & More with Arno Held, AM Ventures Managing Partner

Arno Held, Managing Partner of AM Ventures, joins Alex and Danny for an episode heavily focused on recent VC deals, from series A to C+ across the globe, including ARRIS...

3DPOD Episode 152: Binder Jetting Flexible Materials with Chris Tuck, Reactive Fusion Founder

Chris Tuck is an entrepreneur and Nottingham University professor playing an outsized role in commercializing and researching new 3D printing technologies. He’s made a number of breakthroughs in binder jet,...

3DPOD Episode 151: Large Format Polymer 3D Printing with Max Heres, Loci Robotics

Before starting Loci Robotics, Max Heres had a storied history beginning with the study of polymer physics before working as a graduate research assistant at Oak Ridge National Laboratory and...