Nanoscribe Combines 3D Micro-Printing Technology and Conventional Series Production

IMTS

Share this Article

I’d be lying if I said that nanotechnology and 3D micro printing didn’t completely astound me – it’s amazing that objects which are so tiny can be so valuable. Nanoprinting could have a large impact on fields like electronics and medical, and Germany-based Nanoscribe is an expert when it comes to microfabrication in 3D printing. The company introduced its Photonic Professional GT 3D printer, an ultra-high resolution laser lithography system, back in 2015, and earlier this year demonstrated its ability to 3D print micro-optics. Like just about everyone else in the industry, Nanoscribe attended formnext in Frankfurt last week, and brought conventional serial production and 3D micro printing technologies together at its trade fair booth.

Nanoscribe, a spin-off of the Karlsruhe Institute of Technology (KIT), develops and provides 3D printers for the nano-, micro-, and mesoscale, along with photoresists and process solutions. The Photonic Professional GT allows the company to fabricate complex nano- and micro-structured plastic components at an extremely high resolution, with structures that only measure a few millimeters.

Photonic Professional GT

Nanoscribe’s 3D printing systems use the two-photon polymerization (2PP) 3D printing process, which involves a laser beam exposing a photosensitive material, then curing it in the focal point, making it possible for just about any 3D polymer structure to be printed; the company’s 3D printers have size limits far beyond what stereolithography is capable of creating. By utilizing 2PP technology, Nanoscribe is able to 3D print high-precision micro-components with submicron feature sizes down to just 200 nanometers. The company’s in-house software package offers a user-friendly interface and an easy to follow workflow that combine to optimize the properties, like shape accuracy and surface finish, and process of the 3D printed object.

Manufacturers of microelectronic, microfluidic, and micro-optical components have to be flexible, due to the decreased product life cycles, complex designs, and faster iteration processes they have to deal with; in addition, it is very hard to produce free-form structures with resolutions below 10 μm using traditional forms of manufacturing, which is where Nanoscribe comes in. 3D printed polymer masters, which can be used to make molds for hot embossing or injection molding, are based on direct laser writing, and can be directly manufactured from CAD models, allowing for cost-efficient reproduction of large amounts of the printed parts, and high shape fidelity as well.

3D printed polymer master serves as base for a Nickel-shim for injection molding.

Polymer masters can be used in micro-tooling – one example is transferring 3D printed micro-optical shapes into serial manufacturing with the help of polymer masters. Prisms, microlenses, and retroreflectors – all considered to be micro-optical elements – can be 3D printed with high dimensional accuracy, which makes them perfect for applications such as smartphones and medical engineering.

3D printed micro-optics can be used as polymer masters when they are given sharp edges, asymmetric geometries, vertical slopes, and arrays of differing elements, and it’s then electroformed into a nickel-shim – the 3D printed polymer structure is sputtered with a thin layer of metal, and the nickel-shim is electrodeposited on top to form a replica mold. This kind of mold can then be added to the process chain for different types of injection molding, which, Nanoscribe says, “provides the basis for further series production.”

Nanoscribe also offers a line of special, easy-to-use photoresists, tailored especially for its Photonic Professional GT 3D printer to maximize its performance.

The negative-tone photoresists target specific qualities, like throughput, surface smoothness, and resolution, and samples are easily produced from hydrogels and cell binding/repelling, hydrophobic, and hydrophilic polymers; this allows for direct fabrication onto multiple types of substrates, like silicon chips and glass.

In addition to 3D printing micro-structures and micro-components, Nanoscribe’s unique technology can be used to produce micro-parts, like miniaturized clamps, gears, screws, and spirals, with dimensions up to the millimeter range. Medical engineers, and the watch and MEMS industry, can use these 3D printing solutions to decrease how long their iteration cycles and product development processes take.

Screws with threads of 1.3 mm outer diameter and corresponding nuts.

Discuss this story, and other 3D printing topics, at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

[Images: Nanoscribe]

 

Share this Article


Recent News

EOS & AMCM Join Forces with University of Wolverhampton to Establish UK Centre of Excellence for Additive Manufacturing

3D Printing News Unpeeled: Better Elastomers, Mailbox Keys and Origami Networks



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Unpeeled: New Arkema Material for HP, Saddle and Macro MEMS

A new Arkema material for MJF is said to reduce costs per part by up to 25% and have an 85% reusability ratio. HP 3D HR PA 12 S has been...

3D Printing News Briefs, January 20, 2024: FDM, LPBF, Underwater 3D Printer, Racing, & More

We’re starting off with a process certification in today’s 3D Printing News Briefs, and then moving on to research about solute trapping, laser powder bed fusion, and then moving on...

3D Printing Webinar and Event Roundup: December 3, 2023

We’ve got plenty of events and webinars coming up for you this week! Quickparts is having a Manufacturing Roadshow, America Makes is holding a Member Town Hall, Stratafest makes two...

Featured

Intuitive Machines Debuts $40M Hub for Lunar Ambitions and 3D Printing Tech

Best known for its pioneering work in lunar exploration and its development of the Nova-C lunar lander, Intuitive Machines (Nasdaq: LUNR) has marked yet another significant milestone. The leading space...