Draper Offers Far-Reaching Potential for 3D Printed Electronics with New Sprayable Metal Ink

Share this Article

3D printing continues to forge ahead via thousands of innovators around the globe. Affecting nearly every industry possible, today we see a wide range of hardware, software, and materials being used as the technology continues to hit the mainstream with its own multibillion-dollar economy. 3D printing with metal is certainly one of the processes at the forefront today. And while users on many different levels are interested in using metal for 3D printing, its importance is usually weighed in terms of industrial use as it allows for parts to be made quickly and affordably—and often with inimitable strength.

While numerous companies today have become heavily invested in research that centers around studying metal powders (like titanium, steel, nickel, cobalt, and more), others have veered off to find other ways to use 3D printing in metal; for example, Draper’s research and development lab in Cambridge, Massachusetts has created a method for sprayable electronics that could change not only the way products are made and connect to the Internet—but also allows for even greater strides in prototyping.

Peter Lewis

The new technique developed by Draper uses ‘ink’ made of sprayable metal. And while such innovation should offer many new opportunities for the electronics industry, one industry researcher explained that the new technology could ‘reduce the concept-to-prototype fabrication time for a microprocessor from many weeks and even months to just a few days.’

While rapid prototyping has always been one of the main uses for 3D printing, Draper is taking the process a step further with the speed in which electronics can be created through the new sprayable method.

“Product designers are eager to shorten the time it takes to go from concept-to-prototype-to-test in large part because their customers are asking for it,” said Brian Smith, principal member of the technical staff at Draper. “If your market is looking for products in more variety, with varying capabilities and in different form factors, your product designers are on the hook to rapidly churn out prototypes. That’s not easy with the current approach to electronics manufacturing.”

The new 3D printer uses ink that is not only ‘multi-material,’ but also possesses conductive qualities that can be used for making circuit boards and other electronics. Such processes have begun replacing subtractive manufacturing due to speed in workflow and greater savings on the bottom line, as well as offering the ability to create parts not previously possible.

“Given that electronics are fundamentally multi-material systems, the challenge lies not just in material formulation but also material-material interaction including chemical compatibility, adhesion, temperature processing and induced stresses,” said Peter Lewis, a member of Draper’s technical staff and co-author of a study on 3D printing using aerosol jet printing.

Lewis goes on to point out that aerosol jet printing (AJP) can be used on structures made of different materials like plastic, ceramic, and metal. This means that electrical components like an antennae or sensors can be printed quickly and in high volume, and allow for integration with an underlying industrial component.

Lewis worked on the recent AJP study with Brian Smith and Robert White, who is Associate Professor at the Department of Mechanical Engineering at Tufts University. The group created a multilayer system-on-a-chip microprocessor and subjected it to environmental and rapid aging tests. The microprocessors were put through the following:

  • Thermal shock
  • Massive temperature variances
  • Moisture resistance tests
  • Insulation resistance tests

As a result, the team found that the conductive ink was not only durable, but able to continue functioning despite extreme environments. This points to greater longevity for electronics, as well as the potential for creating devices that are smaller.

“Without a doubt, AJP technology results in electronic systems fabrication with much greater versatility. Among all of our findings, we were most surprised to find that the 3D multi-material printer reduced the concept-to-prototype fabrication time for a microprocessor from many weeks and even months to just a few days,” said White.

“We see many uses for aerosol jet printing (AJP) technology, where the entire system can be deposited on a 3D, potentially flexible, substrate, and not confined to two-dimensional planes. In particular, Internet of Things (IoT) applications are a good fit because they require small, conformal modules integrating standard commercial off the shelf (COTS) components with a fast time-to-market and simple circuit customization/revision.”

This is just one project Draper is involved in, as they continue to research and develop new ways that 3D printing can be applied to 3D printing. So far, they have used their new AJP technology to create an antenna and a patent-pending hybrid 3D-microelectronics process.

What do you think of this recent 3D printing news? Let us know your thoughts! Please join the discussion of this and other 3D printing topics at 3DPrintBoard.com, or share your comments below.

[Images: Draper]

 

Share this Article


Recent News

Singapore: World’s First 3D Printed Polymer Ribcage Reconstruction

Researchers Run Simulation Tests on Their 3D Printed CubeSat Before LEO Mission



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

University College Dublin: 3D Printing and Testing Molds for Microneedle Arrays

Microneedle arrays, or MNAs, are devices made up of micron-sized needles that make it possible to transfer a signal or compound across an outer layer of tissue, like skin. Because...

India: Researchers Analyze the Effects of Vibration in Cantilever 3D Printers

In the recently published ‘Vibration Analysis of Cantilever Shaped 3D Printers,’ researchers A. Srivastava, C. Gautam, N. Bhan, and Ram Dayal discuss how to improve 3D printing hardware further, as...

Improved FDM 3D Printing with Lignin Biocomposites

In the recently published ‘Lignin: A Biopolymer from Forestry Biomass for Biocomposites and 3D Printing,’ international researchers Mihaela Tanase-Opedal, Eduardo Espinosa, Alejandro Rodríguez, and Gary Chinga-Carrasco explore a very specific...

PLA in FDM 3D Printing: Studying the Effects of Porosity & Crystallinity

In the recently published, ‘Effect of Porosity and Crystallinity on 3D Printed PLA Properties,’ international researchers look further into FDM (FFF) 3D printing with PLA, examining physical changes during fabrication....


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!