AMS

Researchers Create New Cushioning Material Using 3D Printing Technique

ST Metal AM
ST Dentistry

Share this Article

Cushioning or padding are utilized to dampen shock and vibrations, distribute and relieve stress, maintain relative positioning, or mitigate the effect of size variation. The materials that serve these purposes are part of our ever day lives in sporting and other consumer goods, as well as being utilized by the defense and aerospace industries and for packaging and transportation. Their ubiquitous nature has led to a thorough study of their uses, characteristics, strengths, and weaknesses.

This cushioning and padding can be provided through either gels or foams but either method has its disadvantages. Gels provide a high level of cushioning but are subject to lower performance depending on the temperature, and they are relatively heavy. In contrast, foams are lighter and have a high level of compressibility but their performance varies unpredictably as it is not possible to entirely control the shape, size, or placement of the air pockets they contain.

33111_additive875x500In an attempt to create a better product, engineers and scientists at Lawrence Livermore National Laboratory (LLNL) worked together to create an entirely new way of producing a cushioning material. Their approach was to work at the microscale and fabricate a material with a number of programmable properties that could be manipulated to create the desired characteristics.

These new materials are produced using an additive manufacturing techniques called direct ink writing with a silicone-based ink that cures into a material much like rubber. Using this technique, engineers at LLNL are able to create materials with controlled, complex architectures called cellular elastomers. These ordered, cellular materials enable improved control over the material’s mechanical and directional properties, enhanced uniformity, and increased predictive modeling capability.

The team has released their research in the Journal of Advanced Functional Materials. Lead author Eric Duoss described the nature of their contribution:

“The ability to dial in a predetermined set of behaviors across a material at this resolution is unique, and it offers industry a level of customization that has not been seen before.”

The cushion material that the LLNL researchers created can have one of two different forms, a stacked inline configuration or a staggered configuration. The component materials for either configuration are exactly the same and posess the same degree of porosity but they exhibit very different responses to shear and compression stresses. The stacked configuration undergoes a buckling instability under increased compression, but at normal compression exhibits a stiffer structure while the staggered material is softer under normal compression with a bending deformation under increased compression.

Screen Shot 2014-08-21 at 3.15.09 PMCurrently, LLNL has patents filed for the materials they have engineered and are working to scale up their infrastructure to allow for commercial production. In addition, they are hoping to continue refining and improving the product as well as seeking out additional performance characteristics that make it suitable for a wider variety of market applications.

[Source: Wiley.com]

Share this Article


Recent News

Concrete Dreams: 3D Printing for Military Construction Enables New Tactics, Pt. 2

Metal 3D Printing Services to Hit $16.1B by 2031



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Industry Worth $13.5B, Will Reach $25B by 2025

According to its latest market data, SmarTech Analysis estimates that the 3D printing industry grew at a rapid pace of about 23% in 2022, reaching $13.5 billion. This number specifically...

Featured

SmarTech Releases First Report on Emerging 3D Printing Technologies and OEMs

Key technologies like 3D printing are among the driving forces behind digital transformation in manufacturing. Today, additive manufacturing (AM) platform options go beyond the two historically dominant and pioneering players...

Featured

3D Printing Media Outlet 3Dnatives Bought by Largest Plastics Organization, SPE

In one of the latest moves in the 3D printing industry, the Society of Plastics Engineers (SPE) has acquired the French online media platform 3Dnatives. The move comes as the...

Velo3D Metal AM Webinar Powered by 3DPrint.com

3DPrint.com will host a new Velo3D (NYSE: VLD) webinar titled “Unlocking the Potential of Metal AM: Strategies for Scaling Production with Velo3D” to discuss the roadblocks to successfully scaling metal...