AMS 2025

UA Researchers Use 3D Printing to Help Fight Cancer

AM Research Military

Share this Article

Medicine and 3D printing continue to merge with one another. We have seen numerous applications for 3D printing within the medical field, most centering around 3D bioprinting. Today the University of Alabama announced a unique combination of the 2 fields. The very first 3D printed model of a G-quadruplex DNA sequence, with its molecular structure, has been created.

g-quad1

3D Printed G-quadruplex Molecule

The work was done by Dr. Vincent F. Scalfini, the engineering and science librarian at UA, who teamed up with Dr. Stephen Neidle, and Stephan A. Ohnmacht, both working as researchers in the UK, at the University College London. The researchers converted x-ray crystallography data of the molecule, as well as the drug targeting it, into a 3D model, which they than manipulated in order to 3D print. The researchers feel that such technology will make major strides in the fight against cancer, as the 3D physical model will allow scientists to further understand the DNA sequence they are working with.

Dr. Scalfani explained the significance of his work as follows,
“Preparing the G-qaudruplex DNA sequence for 3D printing was a challenge and certainly pushed the limits of what we thought was possible in the UA 3D Lab. The structure is extremely intricate, containing multiple areas of stacked functional groups that are all surrounded by a common outer loop. The 3D printed G-quadruplex is stunning; you can see all of the symmetry, facets and angles within the molecule.”

It may seem rather useless to have a 3D printed physical representation of the DNA structure when researchers are able to view the same structure on a computer, however, those who see it that way, have never worked with this kind of data. The printed model is already being put to use in pre-clinical pancreatic cancer studies at the University, and will also give students at the school a hands on learning experience.

“G- quadruplex DNA is unusual as it is four-stranded, not two stranded like ‘normal’ double helical DNA we know,” Ohnmacht said.

For this very reason, having the means to handle the model, and truly understand it is invaluable to researchers. The ability for them to get a true feel for the three dimensional characteristics of the structure is priceless.

Discuss this story at 3DPrintBoard.

Share this Article


Recent News

AML3D Expands into Utilities with Sale of Metal 3D Printer to the Tennessee Valley Authority

LEAM’s Clever Add-On Solution Is Making Large-Scale 3D Printing Work Smarter, Not Harder



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Former Formlabs Exec is New Quantica CEO

Inkjet 3D printer manufacturer Quantica has appointed Stefan Hollaender as its new Chief Executive Officer (CEO). This leadership change marks a pivotal moment in Quantica’s evolution, with the outgoing CEO,...

Sponsored

Innovations in Electronics and Additive Manufacturing: Highlights from Electronica and Formnext 2024

In November, J.A.M.E.S. participated in two big industry events: Electronica and Formnext 2024. These international events have been a good opportunity for J.A.M.E.S to show our ability in 3D-printed electronics...

Featured

Printing Money Episode 24: Q3 2024 Earnings Review with Troy Jensen, Cantor Fitzgerald

Welcome to Printing Money Episode 24. Troy Jensen, Managing Director of Cantor Fitzgerald, joins Danny Piper, Managing Partner at NewCap Partners, once again as it is time to review the...

Sponsored

Finding Solutions in an Uncertain Market: The impact of reduced material providers and trade tariffs on filament supply

The additive manufacturing market has been an ever-changing market with rapidly evolving technological advancements and growing dependencies on material innovation. The recent wave of material suppliers shuttering operations and the...