Build Castles at the Beach with 3D Printed Mathematical Sand Molds

IMTS

Share this Article

Want to spend the last beautiful weeks leading into Fall relaxing at the beach but worried there won’t be enough mathematics there to keep you entertained? Fret no more! Professor Will Webber, faculty member in Whatcom Community College’s Math Department, has created a fantastic way to enjoy the beauty of mathematics and get a tan at the same time.

Screen Shot 2015-09-02 at 9.36.27 AMIt began with the quest to create more interesting sand castles. The standard plastic mold sets sold provide a couple turrets and a crenelated tower or two but that’s the end of it. First, Webber decided to experiment with ways to make patterns on the walls of the castle.

The first attempt involved the creation of flat panels, but Webber quickly realized the limitations of that design:

“It has been an interesting summer of design and redesign. We started with the notion of flat panels to add interesting patterns to castle walls, but we had several issues with the panels. These issues included the printer not printing properly (the panels had a tendency to warp), and not cutting into the sane well enough. So, we moved on to the idea of rollers.”

Screen Shot 2015-09-02 at 9.37.46 AMThe rollers work on the same basic principle as a paint roller except that rather than having a fuzzy nap – a nightmare in a sandy situation – the roller has a raised pattern meant to leave an impression in a soft surface such as sand. Webber created several types of rollers for creating frieze patterns, placing a series of Screen Shot 2015-09-02 at 9.36.59 AMwindows on a grid, and there are two based on a space filling Hibert curve that can be used to create a labyrinth. These 3D printed rollers are not only good for use in the sand; Webber’s daughter even used them to roll a texture into part of the cake she was baking for the county fair!

After exploring the rollers, Webber moved on to the creation of a series of shape molds. Here’s where it becomes very clear how much he enjoys playing with mathematical ideas.

“Being a polydedral guy,” Webber said, “I started with the platonic solids. Then for kicks I did one of the Archimedean solids and my favorite Johnson solid. It is not every day that you see a triangular hebesphenorotunda, and even more rare that you see one at the beach.”

And he’s right, I simply cannot remember the last time I came upon a triangular hebesphenorotunda by the seaside.

Screen Shot 2015-09-02 at 9.40.15 AMNot one to take a project like this halfway and then abandon it, Webber began to create cookie cutter-type molding tools as well as bucket molds to spice up the sand castle. The cutters were printed in a variety of polygons with from 3 to 12 sides and are ideal for tiling a plane since each side is of equal length. In addition, he created cutters to make the shapes for arches, windows, and doors – the arches being catenary curves provide an opportunity to lure passersby into conversation by noting that “the lintel has a point that comes form a hyperbolic sine of an absolute value function.”

Screen Shot 2015-09-02 at 9.42.18 AMThe bucket molds are still a work in progress as Webber would like to create designs that incorporate fractals. Since he had decided to submit these designs to the Thingiverse Summer S.T.E.A.M Challenge for Math: Build a Castle (his was the winning entry!) he had to wrap up the design of the buckets in a simpler fashion. In doing so, he didn’t sacrifice any of the elegance of the design:

“I do have simpler designs ready. One is inspired by my wife who insisted that we should have some kind of top for towers that had merlons with heights related to the abacabadabacaba pattern related to binary counting. As it has fractal properties, it fit in with what I was trying to do. The other bucked mold is a parabolic hyperboloid with some exponential bumps added to it.”

Screen Shot 2015-09-02 at 9.42.53 AMSee? It’s fun for the whole family and educational too. It sure beats the heck out the castles I built as a kid; I think I’d better go back to the beach and try again.

Let us know if you decide to print out some of these molds to make waves of your own in the 3D Printed Sand Castle Math forum thread over at 3DPB.com.

Screen Shot 2015-09-02 at 9.37.33 AM

 

Share this Article


Recent News

Profiling a Construction 3D Printing Pioneer: US Army Corps of Engineers’ Megan Kreiger

Meltio and Accufacture Unveil Robotic Metal 3D Printer Made in the US



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing News Briefs, April 13, 2024: Robotics, Orthotics, & Hypersonics

In 3D Printing News Briefs today, we’re focusing first on robotics, as Carnegie Mellon University’s new Robotics Innovation Center will house several community outreach programs, and Ugogo3D is now working...

Rail Giant Alstom Saves $15M with 3D Printing Automation Software 3D Spark

3D Spark has entered into a three-year deal with the rail giant Alstom. Alstom, a transport behemoth with annual revenues of $16 billion, specializes in the manufacture of trains, trams,...

Meltio Expands Global Reach with New Partnerships in the Americas and Europe

Spanish 3D printing manufacturer Meltio has expanded its sales network across the globe. With the addition of three new partners in the United States, Brazil, Argentina, and Italy, Meltio aims...

3D Printing Webinar and Event Roundup: April 7, 2024

Webinars and events in the 3D printing industry are picking back up this week! Sea-Air-Space is coming to Maryland, and SAE International is sponsoring a 3D Systems webinar about 3D...