Researchers Use 3D Printed Models to Save Lives with Delicate Ventricular Surgery

IMTS

Share this Article

Postinfarction ventricular septal defect, or VSD, is an uncommon — but serious — complication of acute myocardial infarction and it’s often deadly.

Doctors say the event happens within 2-8 days after an infarction and often causes what’s known as cardiogenic shock. The condition requires that patients undergo emergency surgical treatment and coronary artery bypass grafting is often required.

Image 178While improved surgical techniques to repair perforations in different areas of the septum have led to improved results, the current practice is complex and delicate.

The preferred treatment is known as percutaneous closure , and surgeons say it’s perhaps the most viable treatment strategy. In surgery, the word ‘percutaneous’ refers to any medical procedure intervention done via needle-puncture of the skin rather than by using a scalpel or laser. This percutaneous approach is often used in vascular procedures like angioplasty and stenting, and it uses a needle catheter and a wire placed into a blood vessel.

Image 179Now a group of doctors and technicians at the Bristol Heart Institute say they’re using 3D printed models to better understand the morphology of the defects and improve patient outcomes. They say building a physical, 3D printed representation of these defects will help remedy the relative lack of understanding involved in the defect and improve what they say is a limited range of available closure devices.

The Bristol Heart Institute, a leading center for the treatment of the condition using percutaneous intervention in their catheter lab, say using a physical representation of the defects will prove key in treating the damage.

Evan Ansell, Ian Negus, Margaret Saunders, Mark Turner, Nathan Manghat, and Mark Hamilton at the School of Cellular and Molecular Medicine of the University of Bristol and University Hospitals Bristol say a study they took proved that a 3D printer is ideal to reproduce representations of these ventricular septal defects.

mqdefaultThe team say their methodology will be used to review the treatment of VSDs and that 3D printing technology will be applied to visualizing a wide range of cardiac defects, both for later analysis of treatments and as models to aid them in planning surgical intervention.

Researchers used a RepRap Mendel printer to build models segmented from CT scans to develop a method to take image data from what’s called CT Coronary Angiography. The data is used to create a 3D print of a VSD, and doctors can then use the models to assess the accuracy of the process and identify any limitations which might exist.

The team says the data was anonymized before software was used to select the area affected by the defect and then create a ‘segmented’ portion of the ventricular wall for review.

Doctors and researchers are now bring the full power of 3D printing technology to bear in their efforts to plan for delicate surgical procedures. Do you know of any ways medical professionals are using 3D printing to improve patient outcomes? Let us know in the 3D Printed Models to Save Lives forum thread on 3DPB.com.

ea

Share this Article


Recent News

Will There Be a Desktop Manufacturing Revolution outside of 3D Printing?

Know Your Würth: CEO AJ Strandquist on How Würth Additive Can Change 3D Printing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Pressing Refresh: What CEO Brad Kreger and Velo3D Have Learned About Running a 3D Printing Company

To whatever extent a business is successful thanks to specialization, businesses will nonetheless always be holistic entities. A company isn’t a bunch of compartments that all happen to share the...

Würth Additive Launches Digital Inventory Services Platform Driven by 3D Printing

Last week, at the Additive Manufacturing Users’ Group (AMUG) Conference in Chicago (March 10-14), Würth Additive Group (WAG) launched its new inventory management platform, Digital Inventory Services (DIS). WAG is...

Featured

Hypersonic Heats Up: CEO Joe Laurienti on the Success of Ursa Major’s 3D Printed Engine

“It’s only been about 24 hours now, so I’m still digesting it,” Joe Laurienti said. But even via Zoom, it was easy to notice that the CEO was satisfied. The...

Featured

3D Printing’s Next Generation of Leadership: A Conversation with Additive Minds’ Dr. Gregory Hayes

It’s easy to forget sometimes that social media isn’t reality. So, at the end of 2023, when a burst of doom and gloom started to spread across the Western world’s...