Scientists in England 3D Print BioSensor That Can Immediately Tell If Water Is Clean

IMTS

Share this Article

Scientists in England have a way to help people in developing countries make sure their drinking water is safe.  Researchers from the University of Bath’s Department of Chemical Engineering and Bristol Robotics Laboratory waterat the University of the West of England have created a  sensor, which is reportedly safe to use in rivers and lakes for round-the-clock water quality assessment.

The device, which was designed and printed using 3D printing technology, is essentially a fuel cell filled with bacteria. The bacteria live, feed and reproduce inside the fuel cell. When they eat and grow, they produce a small, measurable electrical charge. When bacteria in the sensor come into contact with contaminated water, the electrical current decreases a noticeable amount. This change is enough to alert someone that his water is not safe for drinking.

In their laboratory trials, the research team was able to use the sensor to detect pollutants such as cadmium. Cadmium is a toxic by-product of the electronics industry. It produces a number of health problems in those exposed to it and is a known carcinogen. Dr. Mirella Di Lorenzo, Lecturer in Chemical Engineering at Bath, said the biosensor is a simple, but useful warning system. “Because this system uses live bacteria, it acts a bit like a canary in a mine, showing how these chemicals affect living organisms,” he stated

Dr. Di Lorenzo also stated that an added benefit of the device is that results are immediate. “This means we are able to monitor the level of pollutants in the water in real time without having to collect multiple samples and take them to a laboratory.”

water-feat

Currently, researchers analyze the effects of water pollution by studying how the polluted water reacts with fish or plankton. They also use a very sensitive process called mass spectrometry to measure water pollution. This process requires special equipment that can be very expensive and require care and operation by an expert. Both of these methods of measuring water pollution are costly and complex. The fact that this new device is cheap and accurate is the primary reason that this 3D printing breakthrough that  the University of Bath and University of the West of England, will be a major help to those in developing countries.

The team’s research is published in the Biosensors and Bioelectric journal, titled ‘A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality’. Let’s hear your thoughts on these biosensors, and what they could mean for drinking water safety in the 3D printed water sensor forum thread on 3DPB.com.

 

Share this Article


Recent News

Solidscape Sold to Investor by Prodways

3D Printing Unpeeled: BMF 510(k) & SprintRay Midas



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Precision at the Microscale: UK Researchers Advance Medical Devices with BMF’s 3D Printing Tech

University of Nottingham researchers are using Boston Micro Fabrication‘s (BMF) 3D printing technology to develop medical devices that improve compatibility with human tissue. Funded by a UK grant, this project...

3D Printing Webinar and Event Roundup: April 21, 2024

It’s another busy week of webinars and events, starting with Hannover Messe in Germany and continuing with Metalcasting Congress, Chinaplas, TechBlick’s Innovation Festival, and more. Stratasys continues its advanced training...

3D Printing Webinar and Event Roundup: March 17, 2024

It’s another busy week of webinars and events, including SALMED 2024 and AM Forum in Berlin. Stratasys continues its in-person training and is offering two webinars, ASTM is holding a...

3D Printed Micro Antenna is 15% Smaller and 6X Lighter

Horizon Microtechnologies has achieved success in creating a high-frequency D-Band horn antenna through micro 3D printing. However, this achievement did not rely solely on 3D printing; it involved a combination...