University of Washington Professor Wants to Scan Every Fish in Existence (and 3D Print a Few, Too)

IMTS

Share this Article

Scan of a tidepool snailfish

Scan of a tidepool snailfish

If you’ve ever stood on the shore of the ocean, especially at high tide, you may have noticed each wave carrying in an assortment of glittering fishes. Silver or white, translucent or iridescent, the variety is endless, and, unless you’re a marine biologist or fish expert, it’s unlikely that you’ve been able to identify them all, or even any of them. There are somewhere around 30,000 different types of fish on the planet, at an estimate. I can identify a few of them, but my fish ID skills are pretty limited. I’m not too ashamed of this, as even scientists who have studied fish for their entire careers have difficulty telling many species apart.

Adam Summers is a professor of comparative biomechanics at the University of Washington’s Friday Harbor Laboratories, and his goal is to create a visual catalog of as many fish species as possible, so that anyone who cares to can examine them closely.

adam-summers-labc

Adam Summers [Image: University of Washington]

“I’m using a CT scanner that allows you to visualize 3-D skeletal maps,” he said. “You see fine detail that’s incredibly important for telling one fish from another.”

So far, he has scanned about 40 fish species and uploaded them to his page on the Open Science Framework site. He’s got a long way to go to get to 30,000, but his ambition is high – he intends to “scan ALL the fishes.” The project is multipurpose. Many species of fish, particularly those in the same family, look so similar that it’s nearly impossible to tell them apart, but by studying their skeletal forms, you can see subtle differences in structure that may not seem important, but actually show major differences in how the fishes interact with their environment.

Northern clingfish [Image: Petra Ditsche, University of Washington]

Northern clingfish [Image: Petra Ditsche, University of Washington]

For example, there’s the clingfish family. The family includes over 150 different species, and they all, as their name suggests, cling to things. What they cling to depends on the structure of their pelvic fins, and by studying those structures, Summers can ascertain whether they are a type that clings to rocks, or urchins, or other fish. This is valuable knowledge from a research standpoint alone, but Summers and his colleagues are also interested in studying the structure and behavior of fish to potentially develop new technology.

“I look for how fish stick to things, fish that burrow, and fish that wear armor,” he said. “…By scanning the clingfish, you can see performance on all different size structures.”

The open source format of his study is a great way for anyone studying marine biology to augment their research, but it’s also a wonderful resource for kids and adults alike to broaden their knowledge of species diversity. Even those with little or no knowledge of fish can learn a lot – or, if nothing else, one can have a great time imagining a hilarious fish name-calling fight. (“Who are you callin’ a slimy sculpin, you fourfingered lipsucker?!”)

"YOU'RE a barred-chin blenny!"

“YOU’RE a barred-chin blenny!”

Summers has also been using a 3D printer to create enlarged printed models of his tiny fishes. It’s hard to study detail in something so small, but with a 3D printer, it’s easy to scale something up from a scan so that it can be easily examined. Many scientists have been using this method to study tiny fossils and other microscopic specimens; it’s also a great way to study artifacts without risking damage to the fragile originals.

Still not convinced of the relevancy of Summers’ work to your own interests? I’m willing to bet you’ve seen Finding Nemo. The movement and biology of the fish and other marine animals in the film were largely influenced by Summers, who was contacted by Pixar while working as a Miller Research Fellow at the University of California, Berkeley. He spent three years working as an advisor on the film; without his research, you may never have known how well a fish with a gimpy fin can actually swim (and just keep swimming). What do you think of this endeavor? Discuss in the 3D Fish Species Database forum over at 3DPB.com.

[Source: Wired Magazine]

Share this Article


Recent News

3D Printing Financials: Velo3D Struggles in Harrowing 2023 Earnings Report

Time Travelers’ Relics: 5 Spectacular 3D Printed Artifacts that Bring History to Life



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Webinar and Event Roundup: March 17, 2024

It’s another busy week of webinars and events, including SALMED 2024 and AM Forum in Berlin. Stratasys continues its in-person training and is offering two webinars, ASTM is holding a...

HP Releases New Arkema Sustainable 3D Printing Polymer Ahead of AMUG 2024

Ahead of the Additive Manufacturing Users Group (AMUG) Conference in Chicago next week (March 10-14), HP Inc. (NYSE: HPQ) has announced a new sustainable polymer offering, PA 12 S, for...

3D Printing Financials: Materialise Reports Growth in 2023 with Medical Segment Success

Closing out 2023, Materialise (Nasdaq: MTLS) unveiled a strong financial performance for its fourth quarter. The Belgium-based company reported a revenue increase of 4.1% year-over-year, and despite facing net losses,...

3D Printing Webinar and Event Roundup: February 25, 2024

It’s another busy week of webinars and events in the AM industry, including Silicone Expo Europe in Amsterdam, an open house for Massivit in North America, and the AM for...